- -

Building zeolites from precrystallized units: nanoscale architecture

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Building zeolites from precrystallized units: nanoscale architecture

Mostrar el registro completo del ítem

Li, C.; Moliner Marin, M.; Corma Canós, A. (2018). Building zeolites from precrystallized units: nanoscale architecture. Angewandte Chemie International Edition. 57(47):15330-15353. https://doi.org/10.1002/anie.201711422

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/153467

Ficheros en el ítem

Metadatos del ítem

Título: Building zeolites from precrystallized units: nanoscale architecture
Autor: Li, Chengeng Moliner Marin, Manuel Corma Canós, Avelino
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Since the early reports by Barrer in the 1940s on converting natural minerals into synthetic zeolites, the use of precrystallized zeolites as crucial inorganic directing agents to synthesize other crystalline zeolites ...[+]
Palabras clave: Crystallization , Interzeolite transformation , OSDAs , Zeolites
Derechos de uso: Reserva de todos los derechos
Fuente:
Angewandte Chemie International Edition. (issn: 1433-7851 )
DOI: 10.1002/anie.201711422
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/anie.201711422
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2015-71261-R/ES/DISEÑO RACIONAL DE MATERIALES ZEOLITICOS CON CENTROS METALICOS PARA SU APLICACION EN PROCESOS QUIMICOS SOSTENIBLES, MEDIOAMBIENTALES Y ENERGIAS RENOVABLES/
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Descripción: This is the peer reviewed version of the following article: Angew. Chem. Int. Ed. 2018, 57, 15330 15353, which has been published in final form at https://doi.org/10.1002/anie.201711422. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Agradecimientos:
This work has been supported by the Spanish Government (MINECO through "Severo Ochoa" (SEV-2016-0683) and MAT2015-71261-R), by the European Union through ERC-AdG-2014-671093 (SynCatMatch), and by the Fundacion Ramon Areces ...[+]
Tipo: Artículo

References

Cundy, C. S., & Cox, P. A. (2005). The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, 82(1-2), 1-78. doi:10.1016/j.micromeso.2005.02.016

Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014

Čejka, J., Centi, G., Perez-Pariente, J., & Roth, W. J. (2012). Zeolite-based materials for novel catalytic applications: Opportunities, perspectives and open problems. Catalysis Today, 179(1), 2-15. doi:10.1016/j.cattod.2011.10.006 [+]
Cundy, C. S., & Cox, P. A. (2005). The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, 82(1-2), 1-78. doi:10.1016/j.micromeso.2005.02.016

Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014

Čejka, J., Centi, G., Perez-Pariente, J., & Roth, W. J. (2012). Zeolite-based materials for novel catalytic applications: Opportunities, perspectives and open problems. Catalysis Today, 179(1), 2-15. doi:10.1016/j.cattod.2011.10.006

http://www.iza-structure.org/databases/.

Corma, A., & Davis, M. E. (2004). Issues in the Synthesis of Crystalline Molecular Sieves: Towards the Crystallization of Low Framework-Density Structures. ChemPhysChem, 5(3), 304-313. doi:10.1002/cphc.200300997

Kerr, G. T. (1966). Chemistry of Crystalline Aluminosilicates. I. Factors Affecting the Formation of Zeolite A. The Journal of Physical Chemistry, 70(4), 1047-1050. doi:10.1021/j100876a015

Derouane, E. G., Determmerie, S., Gabelica, Z., & Blom, N. (1981). Synthesis and characterization of ZSM-5 type zeolites I. physico-chemical properties of precursors and intermediates. Applied Catalysis, 1(3-4), 201-224. doi:10.1016/0166-9834(81)80007-3

Chang, C. D., & Bell, A. T. (1991). Studies on the mechanism of ZSM-5 formation. Catalysis Letters, 8(5-6), 305-316. doi:10.1007/bf00764192

Burkett, S. L., & Davis, M. E. (1994). Mechanism of Structure Direction in the Synthesis of Si-ZSM-5: An Investigation by Intermolecular 1H-29Si CP MAS NMR. The Journal of Physical Chemistry, 98(17), 4647-4653. doi:10.1021/j100068a027

Li, J., Corma, A., & Yu, J. (2015). Synthesis of new zeolite structures. Chemical Society Reviews, 44(20), 7112-7127. doi:10.1039/c5cs00023h

Davis, M. E. (2013). Zeolites from a Materials Chemistry Perspective. Chemistry of Materials, 26(1), 239-245. doi:10.1021/cm401914u

Moliner, M., Martínez, C., & Corma, A. (2015). Multipore Zeolites: Synthesis and Catalytic Applications. Angewandte Chemie International Edition, 54(12), 3560-3579. doi:10.1002/anie.201406344

Moliner, M., Martínez, C., & Corma, A. (2015). Multiporige Zeolithe: Synthese und Anwendungen bei der Katalyse. Angewandte Chemie, 127(12), 3630-3649. doi:10.1002/ange.201406344

Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121

Barrer, R. M., & Denny, P. J. (1961). 201. Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates. Journal of the Chemical Society (Resumed), 971. doi:10.1039/jr9610000971

Moliner, M., Rey, F., & Corma, A. (2013). Towards the Rational Design of Efficient Organic Structure-Directing Agents for Zeolite Synthesis. Angewandte Chemie International Edition, 52(52), 13880-13889. doi:10.1002/anie.201304713

Moliner, M., Rey, F., & Corma, A. (2013). Rationales Design von effizienten organischen strukturdirigierenden Reagentien für die Zeolithsynthese. Angewandte Chemie, 125(52), 14124-14134. doi:10.1002/ange.201304713

Burton, A. W., & Zones, S. I. (2007). Organic Molecules in Zeolite Synthesis: Their Preparation and Structure-Directing Effects. Introduction to Zeolite Science and Practice, 137-179. doi:10.1016/s0167-2991(07)80793-2

Dorset, D. L., Kennedy, G. J., Strohmaier, K. G., Diaz-Cabañas, M. J., Rey, F., & Corma, A. (2006). P-Derived Organic Cations as Structure-Directing Agents:  Synthesis of a High-Silica Zeolite (ITQ-27) with a Two-Dimensional 12-Ring Channel System. Journal of the American Chemical Society, 128(27), 8862-8867. doi:10.1021/ja061206o

Simancas, R., Dari, D., Velamazan, N., Navarro, M. T., Cantin, A., Jorda, J. L., … Rey, F. (2010). Modular Organic Structure-Directing Agents for the Synthesis of Zeolites. Science, 330(6008), 1219-1222. doi:10.1126/science.1196240

Blasco, T., Corma, A., Díaz-Cabañas, M. J., Rey, F., Vidal-Moya, J. A., & Zicovich-Wilson, C. M. (2002). Preferential Location of Ge in the Double Four-Membered Ring Units of ITQ-7 Zeolite. The Journal of Physical Chemistry B, 106(10), 2634-2642. doi:10.1021/jp013302b

Corma, A., Díaz-Cabañas, M. J., Rey, F., Nicolopoulus, S., & Boulahya, K. (2004). ITQ-15: The first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14- and 12-ring channels, and its catalytic implications. Chem. Commun., (12), 1356-1357. doi:10.1039/b406572g

Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238

Jiang, J., Yu, J., & Corma, A. (2010). Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angewandte Chemie International Edition, 49(18), 3120-3145. doi:10.1002/anie.200904016

Jiang, J., Yu, J., & Corma, A. (2010). Zeolithe mit sehr großen Poren als Bindeglied zwischen mikro- und mesoporösen Strukturen. Angewandte Chemie, 122(18), 3186-3212. doi:10.1002/ange.200904016

Sano, T., Itakura, M., & Sadakane, M. (2013). High Potential of Interzeolite Conversion Method for Zeolite Synthesis. Journal of the Japan Petroleum Institute, 56(4), 183-197. doi:10.1627/jpi.56.183

Goel, S., Zones, S. I., & Iglesia, E. (2015). Synthesis of Zeolites via Interzeolite Transformations without Organic Structure-Directing Agents. Chemistry of Materials, 27(6), 2056-2066. doi:10.1021/cm504510f

Martín, N., Moliner, M., & Corma, A. (2015). High yield synthesis of high-silica chabazite by combining the role of zeolite precursors and tetraethylammonium: SCR of NOx. Chemical Communications, 51(49), 9965-9968. doi:10.1039/c5cc02670a

Sonoda, T., Maruo, T., Yamasaki, Y., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2015). Synthesis of high-silica AEI zeolites with enhanced thermal stability by hydrothermal conversion of FAU zeolites, and their activity in the selective catalytic reduction of NOx with NH3. Journal of Materials Chemistry A, 3(2), 857-865. doi:10.1039/c4ta05621c

D.Xie S. I.Zones C. M.Lew T. M.Davis WO2016/003504 2016.

Jon, H., Ikawa, N., Oumi, Y., & Sano, T. (2008). An Insight into the Process Involved in Hydrothermal Conversion of FAU to *BEA Zeolite. Chemistry of Materials, 20(12), 4135-4141. doi:10.1021/cm703676y

Goto, I., Itakura, M., Shibata, S., Honda, K., Ide, Y., Sadakane, M., & Sano, T. (2012). Transformation of LEV-type zeolite into less dense CHA-type zeolite. Microporous and Mesoporous Materials, 158, 117-122. doi:10.1016/j.micromeso.2012.03.032

Goel, S., Zones, S. I., & Iglesia, E. (2014). Encapsulation of Metal Clusters within MFI via Interzeolite Transformations and Direct Hydrothermal Syntheses and Catalytic Consequences of Their Confinement. Journal of the American Chemical Society, 136(43), 15280-15290. doi:10.1021/ja507956m

Zones, S. I. (1991). Conversion of faujasites to high-silica chabazite SSZ-13 in the presence of N,N,N-trimethyl-1-adamantammonium iodide. Journal of the Chemical Society, Faraday Transactions, 87(22), 3709. doi:10.1039/ft9918703709

Inoue, T., Itakura, M., Jon, H., Oumi, Y., Takahashi, A., Fujitani, T., & Sano, T. (2009). Synthesis of LEV zeolite by interzeolite conversion method and its catalytic performance in ethanol to olefins reaction. Microporous and Mesoporous Materials, 122(1-3), 149-154. doi:10.1016/j.micromeso.2009.02.027

Itakura, M., Goto, I., Takahashi, A., Fujitani, T., Ide, Y., Sadakane, M., & Sano, T. (2011). Synthesis of high-silica CHA type zeolite by interzeolite conversion of FAU type zeolite in the presence of seed crystals. Microporous and Mesoporous Materials, 144(1-3), 91-96. doi:10.1016/j.micromeso.2011.03.041

Martín, N., Boruntea, C. R., Moliner, M., & Corma, A. (2015). Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications. Chemical Communications, 51(55), 11030-11033. doi:10.1039/c5cc03200h

Inagaki, S., Tsuboi, Y., Nishita, Y., Syahylah, T., Wakihara, T., & Kubota, Y. (2013). Rapid Synthesis of an Aluminum-Rich MSE-Type Zeolite by the Hydrothermal Conversion of an FAU-Type Zeolite. Chemistry - A European Journal, 19(24), 7780-7786. doi:10.1002/chem.201300125

Zones, S. I., & Nakagawa, Y. (1995). Use of modified zeolites as reagents influencing nucleation in zeolite synthesis. Studies in Surface Science and Catalysis, 45-52. doi:10.1016/s0167-2991(06)81871-9

Fan, W., Wu, P., Namba, S., & Tatsumi, T. (2004). A Titanosilicate That Is Structurally Analogous to an MWW-Type Lamellar Precursor. Angewandte Chemie International Edition, 43(2), 236-240. doi:10.1002/anie.200352723

Fan, W., Wu, P., Namba, S., & Tatsumi, T. (2004). A Titanosilicate That Is Structurally Analogous to an MWW-Type Lamellar Precursor. Angewandte Chemie, 116(2), 238-242. doi:10.1002/ange.200352723

De Baerdemaeker, T., Feyen, M., Vanbergen, T., Müller, U., Yilmaz, B., Xiao, F.-S., … Gies, H. (2014). From Layered Zeolite Precursors to Zeolites with a Three-Dimensional Porosity: Textural and Structural Modifications through Alkaline Treatment. Chemistry of Materials, 27(1), 316-326. doi:10.1021/cm504014d

Iyoki, K., Itabashi, K., & Okubo, T. (2014). Progress in seed-assisted synthesis of zeolites without using organic structure-directing agents. Microporous and Mesoporous Materials, 189, 22-30. doi:10.1016/j.micromeso.2013.08.008

Honda, K., Itakura, M., Matsuura, Y., Onda, A., Ide, Y., Sadakane, M., & Sano, T. (2013). Role of Structural Similarity Between Starting Zeolite and Product Zeolite in the Interzeolite Conversion Process. Journal of Nanoscience and Nanotechnology, 13(4), 3020-3026. doi:10.1166/jnn.2013.7356

Barrer, R. M. (1948). 33. Synthesis of a zeolitic mineral with chabazite-like sorptive properties. Journal of the Chemical Society (Resumed), 127. doi:10.1039/jr9480000127

Barrer, R. M., & Riley, D. W. (1948). 34. Sorptive and molecular-sieve properties of a new zeolitic mineral. Journal of the Chemical Society (Resumed), 133. doi:10.1039/jr9480000133

Barrer, R. M., Cole, J. F., & Sticher, H. (1968). Chemistry of soil minerals. Part V. Low temperature hydrothermal transformations of kaolinite. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 2475. doi:10.1039/j19680002475

Subotić, B., Škrtić, D., Šmit, I., & Sekovanić, L. (1980). Transformation of zeolite A into hydroxysodalite. Journal of Crystal Growth, 50(2), 498-508. doi:10.1016/0022-0248(80)90099-8

Subotić, B., & Sekovanić, L. (1986). Transformation of zeolite A into hydroxysodalite. Journal of Crystal Growth, 75(3), 561-572. doi:10.1016/0022-0248(86)90102-8

Subotić, B., Šmit, I., Madžija, O., & Sekovanić, L. (1982). Kinetic study of the transformation of zeolite A into zeolite P. Zeolites, 2(2), 135-142. doi:10.1016/s0144-2449(82)80015-8

Khodabandeh, S., & Davis, M. E. (1997). Synthesis of CIT-3: a calcium aluminosilicate with the heulandite topology. Microporous Materials, 9(3-4), 149-160. doi:10.1016/s0927-6513(96)00098-3

Khodabandeh, S., Lee, G., & Davis, M. E. (1997). CIT-4: The first synthetic analogue of brewsterite. Microporous Materials, 11(1-2), 87-95. doi:10.1016/s0927-6513(97)00036-9

Yashiki, A., Honda, K., Fujimoto, A., Shibata, S., Ide, Y., Sadakane, M., & Sano, T. (2011). Hydrothermal conversion of FAU zeolite into LEV zeolite in the presence of non-calcined seed crystals. Journal of Crystal Growth, 325(1), 96-100. doi:10.1016/j.jcrysgro.2011.04.040

Honda, K., Yashiki, A., Itakura, M., Ide, Y., Sadakane, M., & Sano, T. (2011). Influence of seeding on FAU–∗BEA interzeolite conversions. Microporous and Mesoporous Materials, 142(1), 161-167. doi:10.1016/j.micromeso.2010.11.031

Kerr, G. T. (1968). Chemistry of crystalline aluminosilicates. IV. Factors affecting the formation of zeolites X and B. The Journal of Physical Chemistry, 72(4), 1385-1386. doi:10.1021/j100850a056

Xie, B., Song, J., Ren, L., Ji, Y., Li, J., & Xiao, F.-S. (2008). Organotemplate-Free and Fast Route for Synthesizing Beta Zeolite. Chemistry of Materials, 20(14), 4533-4535. doi:10.1021/cm801167e

Majano, G., Delmotte, L., Valtchev, V., & Mintova, S. (2009). Al-Rich Zeolite Beta by Seeding in the Absence of Organic Template. Chemistry of Materials, 21(18), 4184-4191. doi:10.1021/cm900462u

Kamimura, Y., Chaikittisilp, W., Itabashi, K., Shimojima, A., & Okubo, T. (2010). Critical Factors in the Seed-Assisted Synthesis of Zeolite Beta and «Green Beta» from OSDA-Free Na+-Aluminosilicate Gels. Chemistry - An Asian Journal, 5(10), 2182-2191. doi:10.1002/asia.201000234

Xie, B., Zhang, H., Yang, C., Liu, S., Ren, L., Zhang, L., … Xiao, F.-S. (2011). Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates. Chemical Communications, 47(13), 3945. doi:10.1039/c0cc05414c

Kamimura, Y., Tanahashi, S., Itabashi, K., Sugawara, A., Wakihara, T., Shimojima, A., & Okubo, T. (2010). Crystallization Behavior of Zeolite Beta in OSDA-Free, Seed-Assisted Synthesis. The Journal of Physical Chemistry C, 115(3), 744-750. doi:10.1021/jp1098975

Iyoki, K., Kamimura, Y., Itabashi, K., Shimojima, A., & Okubo, T. (2010). Synthesis of MTW-type Zeolites in the Absence of Organic Structure-directing Agent. Chemistry Letters, 39(7), 730-731. doi:10.1246/cl.2010.730

Majano, G., Darwiche, A., Mintova, S., & Valtchev, V. (2009). Seed-Induced Crystallization of Nanosized Na-ZSM-5 Crystals. Industrial & Engineering Chemistry Research, 48(15), 7084-7091. doi:10.1021/ie8017252

Zhang, H., Guo, Q., Ren, L., Yang, C., Zhu, L., Meng, X., … Xiao, F.-S. (2011). Organotemplate-free synthesis of high-silica ferrierite zeolite induced by CDO-structure zeolite building units. Journal of Materials Chemistry, 21(26), 9494. doi:10.1039/c1jm11786f

Yokoi, T., Yoshioka, M., Imai, H., & Tatsumi, T. (2009). Diversification of RTH-Type Zeolite and Its Catalytic Application. Angewandte Chemie International Edition, 48(52), 9884-9887. doi:10.1002/anie.200905214

Yokoi, T., Yoshioka, M., Imai, H., & Tatsumi, T. (2009). Diversification of RTH-Type Zeolite and Its Catalytic Application. Angewandte Chemie, 121(52), 10068-10071. doi:10.1002/ange.200905214

Itabashi, K., Kamimura, Y., Iyoki, K., Shimojima, A., & Okubo, T. (2012). A Working Hypothesis for Broadening Framework Types of Zeolites in Seed-Assisted Synthesis without Organic Structure-Directing Agent. Journal of the American Chemical Society, 134(28), 11542-11549. doi:10.1021/ja3022335

Zones, S. I. (1990). Direct hydrothermal conversion of cubic P zeolite to organozeolite SSZ-13. Journal of the Chemical Society, Faraday Transactions, 86(20), 3467. doi:10.1039/ft9908603467

Chan, I. Y., & Zones, S. I. (1989). Analytical electron microscopy (AEM) of cubic P zeolite to Nu-3 zeolite transformation. Zeolites, 9(1), 3-11. doi:10.1016/0144-2449(89)90002-x

Jon, H., Nakahata, K., Lu, B., Oumi, Y., & Sano, T. (2006). Hydrothermal conversion of FAU into ∗BEA zeolites. Microporous and Mesoporous Materials, 96(1-3), 72-78. doi:10.1016/j.micromeso.2006.06.024

Jon, H., Sasaki, H., Inoue, T., Itakura, M., Takahashi, S., Oumi, Y., & Sano, T. (2008). Effects of structure-directing agents on hydrothermal conversion of FAU type zeolite. Studies in Surface Science and Catalysis, 229-232. doi:10.1016/s0167-2991(08)80184-x

Jon, H., Takahashi, S., Sasaki, H., Oumi, Y., & Sano, T. (2008). Hydrothermal conversion of FAU zeolite into RUT zeolite in TMAOH system. Microporous and Mesoporous Materials, 113(1-3), 56-63. doi:10.1016/j.micromeso.2007.11.003

Roth, W. J., Nachtigall, P., Morris, R. E., & Čejka, J. (2014). Two-Dimensional Zeolites: Current Status and Perspectives. Chemical Reviews, 114(9), 4807-4837. doi:10.1021/cr400600f

Roth, W. J., Kresge, C. T., Vartuli, J. C., Leonowicz, M. E., Fung, A. S., & McCullen, S. B. (1995). MCM-36: The first pillared molecular sieve with zeoliteproperties. Catalysis by Microporous Materials, Proceedings of ZEOCAT ’95, 301-308. doi:10.1016/s0167-2991(06)81236-x

Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592

Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). AlITQ-6 and TiITQ-6: Synthesis, Characterization, and Catalytic Activity. Angewandte Chemie International Edition, 39(8), 1499-1501. doi:10.1002/(sici)1521-3773(20000417)39:8<1499::aid-anie1499>3.0.co;2-0

Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). AlITQ-6 and TiITQ-6: Synthesis, Characterization, and Catalytic Activity. Angewandte Chemie, 112(8), 1559-1561. doi:10.1002/(sici)1521-3757(20000417)112:8<1559::aid-ange1559>3.0.co;2-u

Corma, A., Fornés, V., & Díaz, U. (2001). Chemical Communications, (24), 2642-2643. doi:10.1039/b108777k

Roth, W. J., & Čejka, J. (2011). Two-dimensional zeolites: dream or reality? Catalysis Science & Technology, 1(1), 43. doi:10.1039/c0cy00027b

C. T.Kresge W. J.Roth U.S. Patent 5266541 1993.

Eliášová, P., Opanasenko, M., Wheatley, P. S., Shamzhy, M., Mazur, M., Nachtigall, P., … Čejka, J. (2015). The ADOR mechanism for the synthesis of new zeolites. Chemical Society Reviews, 44(20), 7177-7206. doi:10.1039/c5cs00045a

Roth, W. J., Nachtigall, P., Morris, R. E., Wheatley, P. S., Seymour, V. R., Ashbrook, S. E., … Čejka, J. (2013). A family of zeolites with controlled pore size prepared using a top-down method. Nature Chemistry, 5(7), 628-633. doi:10.1038/nchem.1662

Verheyen, E., Joos, L., Van Havenbergh, K., Breynaert, E., Kasian, N., Gobechiya, E., … Martens, J. A. (2012). Design of zeolite by inverse sigma transformation. Nature Materials, 11(12), 1059-1064. doi:10.1038/nmat3455

Khodabandeh, S., & Davis, M. E. (1997). Zeolites P1 and L as precursors for the preparation of alkaline-earth zeolites. Microporous Materials, 12(4-6), 347-359. doi:10.1016/s0927-6513(97)00083-7

Khodabandeh, S., & Davis, M. E. (1997). Alteration of perlite to calcium zeolites. Microporous Materials, 9(3-4), 161-172. doi:10.1016/s0927-6513(96)00100-9

Van Tendeloo, L., Gobechiya, E., Breynaert, E., Martens, J. A., & Kirschhock, C. E. A. (2013). Alkaline cations directing the transformation of FAU zeolites into five different framework types. Chemical Communications, 49(100), 11737. doi:10.1039/c3cc47292b

Nedyalkova, R., Montreuil, C., Lambert, C., & Olsson, L. (2013). Interzeolite Conversion of FAU Type Zeolite into CHA and its Application in NH3-SCR. Topics in Catalysis, 56(9-10), 550-557. doi:10.1007/s11244-013-0015-4

Ji, Y., Deimund, M. A., Bhawe, Y., & Davis, M. E. (2015). Organic-Free Synthesis of CHA-Type Zeolite Catalysts for the Methanol-to-Olefins Reaction. ACS Catalysis, 5(7), 4456-4465. doi:10.1021/acscatal.5b00404

D.Xie WO2016/122724 2016.

Daniels, R. H., Kerr, G. T., & Rollmann, L. D. (1978). Cationic polymers as templates in zeolite crystallization. Journal of the American Chemical Society, 100(10), 3097-3100. doi:10.1021/ja00478a024

Honda, K., Yashiki, A., Sadakane, M., & Sano, T. (2014). Hydrothermal conversion of FAU and ∗BEA-type zeolites into MAZ-type zeolites in the presence of non-calcined seed crystals. Microporous and Mesoporous Materials, 196, 254-260. doi:10.1016/j.micromeso.2014.05.028

De Baerdemaeker, T., Yilmaz, B., Müller, U., Feyen, M., Xiao, F.-S., Zhang, W., … De Vos, D. (2013). Catalytic applications of OSDA-free Beta zeolite. Journal of Catalysis, 308, 73-81. doi:10.1016/j.jcat.2013.05.025

Kamimura, Y., Itabashi, K., & Okubo, T. (2012). Seed-assisted, OSDA-free synthesis of MTW-type zeolite and «Green MTW» from sodium aluminosilicate gel systems. Microporous and Mesoporous Materials, 147(1), 149-156. doi:10.1016/j.micromeso.2011.05.038

Kamimura, Y., Itabashi, K., Kon, Y., Endo, A., & Okubo, T. (2017). Seed-Assisted Synthesis of MWW-Type Zeolite with Organic Structure-Directing Agent-Free Na-Aluminosilicate Gel System. Chemistry - An Asian Journal, 12(5), 530-542. doi:10.1002/asia.201601569

Moliner, M., Martínez, C., & Corma, A. (2013). Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 26(1), 246-258. doi:10.1021/cm4015095

Zhang, H., Yang, C., Zhu, L., Meng, X., Yilmaz, B., Müller, U., … Xiao, F.-S. (2012). Organotemplate-free and seed-directed synthesis of levyne zeolite. Microporous and Mesoporous Materials, 155, 1-7. doi:10.1016/j.micromeso.2011.12.051

Imai, H., Hayashida, N., Yokoi, T., & Tatsumi, T. (2014). Direct crystallization of CHA-type zeolite from amorphous aluminosilicate gel by seed-assisted method in the absence of organic-structure-directing agents. Microporous and Mesoporous Materials, 196, 341-348. doi:10.1016/j.micromeso.2014.05.043

DWYER, F., & CHU, P. (1979). ZSM-4 crystallization via faujasite metamorphosis. Journal of Catalysis, 59(2), 263-271. doi:10.1016/s0021-9517(79)80030-5

PERROTTA, A. (1978). The synthesis, characterization, and catalytic activity of omega and ZSM-4 zeolites. Journal of Catalysis, 55(2), 240-249. doi:10.1016/0021-9517(78)90210-5

S. I.Zones US 4544538 1985.

Zones, S. I., & Van Nordstrand, R. A. (1988). Novel zeolite transformations: The template-mediated conversion of Cubic P zeolite to SSZ-13. Zeolites, 8(3), 166-174. doi:10.1016/s0144-2449(88)80302-6

Itakura, M., Inoue, T., Takahashi, A., Fujitani, T., Oumi, Y., & Sano, T. (2008). Synthesis of High-silica CHA Zeolite from FAU Zeolite in the Presence of Benzyltrimethylammonium Hydroxide. Chemistry Letters, 37(9), 908-909. doi:10.1246/cl.2008.908

Yamanaka, N., Itakura, M., Kiyozumi, Y., Ide, Y., Sadakane, M., & Sano, T. (2012). Acid stability evaluation of CHA-type zeolites synthesized by interzeolite conversion of FAU-type zeolite and their membrane application for dehydration of acetic acid aqueous solution. Microporous and Mesoporous Materials, 158, 141-147. doi:10.1016/j.micromeso.2012.03.030

Yamanaka, N., Itakura, M., Kiyozumi, Y., Sadakane, M., & Sano, T. (2013). Effect of Structure-Directing Agents on FAU–CHA Interzeolite Conversion and Preparation of High Pervaporation Performance CHA Zeolite Membranes for the Dehydration of Acetic Acid Solution. Bulletin of the Chemical Society of Japan, 86(11), 1333-1340. doi:10.1246/bcsj.20130189

Takata, T., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2016). Nanosized CHA zeolites with high thermal and hydrothermal stability derived from the hydrothermal conversion of FAU zeolite. Microporous and Mesoporous Materials, 225, 524-533. doi:10.1016/j.micromeso.2016.01.045

Martín, N., Vennestrøm, P. N. R., Thøgersen, J. R., Moliner, M., & Corma, A. (2017). Fe-Containing Zeolites for NH3 -SCR of NO x : Effect of Structure, Synthesis Procedure, and Chemical Composition on Catalytic Performance and Stability. Chemistry - A European Journal, 23(54), 13404-13414. doi:10.1002/chem.201701742

Xiong, X., Yuan, D., Wu, Q., Chen, F., Meng, X., Lv, R., … Xiao, F.-S. (2017). Efficient and rapid transformation of high silica CHA zeolite from FAU zeolite in the absence of water. Journal of Materials Chemistry A, 5(19), 9076-9080. doi:10.1039/c7ta01749a

Takata, T., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2017). Incorporation of various heterometal atoms in CHA zeolites by hydrothermal conversion of FAU zeolite and their performance for selective catalytic reduction of NO x with ammonia. Microporous and Mesoporous Materials, 246, 89-101. doi:10.1016/j.micromeso.2017.03.018

Kunitake, Y., Takata, T., Yamasaki, Y., Yamanaka, N., Tsunoji, N., Takamitsu, Y., … Sano, T. (2015). Synthesis of titanated chabazite with enhanced thermal stability by hydrothermal conversion of titanated faujasite. Microporous and Mesoporous Materials, 215, 58-66. doi:10.1016/j.micromeso.2015.05.023

Sasaki, H., Jon, H., Itakura, M., Inoue, T., Ikeda, T., Oumi, Y., & Sano, T. (2008). Hydrothermal conversion of FAU zeolite into aluminous MTN zeolite. Journal of Porous Materials, 16(4), 465-471. doi:10.1007/s10934-008-9220-0

Shibata, S., Itakura, M., Ide, Y., Sadakane, M., & Sano, T. (2011). FAU–LEV interzeolite conversion in fluoride media. Microporous and Mesoporous Materials, 138(1-3), 32-39. doi:10.1016/j.micromeso.2010.09.034

T. M.Davis US9156706 2015.

Moliner, M., Franch, C., Palomares, E., Grill, M., & Corma, A. (2012). Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chemical Communications, 48(66), 8264. doi:10.1039/c2cc33992g

Dusselier, M., Deimund, M. A., Schmidt, J. E., & Davis, M. E. (2015). Methanol-to-Olefins Catalysis with Hydrothermally Treated Zeolite SSZ-39. ACS Catalysis, 5(10), 6078-6085. doi:10.1021/acscatal.5b01577

S. I.Zones Y.Nakagawa S. T.Evans G. S.Lee US 5958370 1999;

Wagner, P., Nakagawa, Y., Lee, G. S., Davis, M. E., Elomari, S., Medrud, R. C., & Zones, S. I. (2000). Guest/Host Relationships in the Synthesis of the Novel Cage-Based Zeolites SSZ-35, SSZ-36, and SSZ-39. Journal of the American Chemical Society, 122(2), 263-273. doi:10.1021/ja990722u

Nakazawa, N., Inagaki, S., & Kubota, Y. (2016). Direct Hydrothermal Synthesis of High-silica SSZ-39 Zeolite with Small Particle Size. Chemistry Letters, 45(8), 919-921. doi:10.1246/cl.160370

Bhadra, B. N., Seo, P. W., Jun, J. W., Jeong, J. H., Kim, T.-W., Kim, C.-U., & Jhung, S. H. (2016). Syntheses of SSZ-39 and mordenite zeolites with N,N-dialkyl-2,6-dimethyl-piperidinium hydroxide/iodides: Phase-selective syntheses with anions. Microporous and Mesoporous Materials, 235, 135-142. doi:10.1016/j.micromeso.2016.08.003

Martín, N., Vennestrøm, P. N. R., Thøgersen, J. R., Moliner, M., & Corma, A. (2017). Iron-Containing SSZ-39 (AEI) Zeolite: An Active and Stable High-Temperature NH3 -SCR Catalyst. ChemCatChem, 9(10), 1754-1757. doi:10.1002/cctc.201601627

Martín, N., Li, Z., Martínez-Triguero, J., Yu, J., Moliner, M., & Corma, A. (2016). Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process. Chemical Communications, 52(36), 6072-6075. doi:10.1039/c5cc09719c

Martín, N., Paris, C., Vennestrøm, P. N. R., Thøgersen, J. R., Moliner, M., & Corma, A. (2017). Cage-based small-pore catalysts for NH3-SCR prepared by combining bulky organic structure directing agents with modified zeolites as reagents. Applied Catalysis B: Environmental, 217, 125-136. doi:10.1016/j.apcatb.2017.05.082

Itakura, M., Oumi, Y., Sadakane, M., & Sano, T. (2010). Synthesis of high-silica offretite by the interzeolite conversion method. Materials Research Bulletin, 45(5), 646-650. doi:10.1016/j.materresbull.2010.01.007

Kubota, Y., Inagaki, S., Nishita, Y., Itabashi, K., Tsuboi, Y., Syahylah, T., & Okubo, T. (2015). Remarkable enhancement of catalytic activity and selectivity of MSE-type zeolite by post-synthetic modification. Catalysis Today, 243, 85-91. doi:10.1016/j.cattod.2014.06.039

Shi, Y., Xing, E., Gao, X., Liu, D., Xie, W., Zhang, F., … Shu, X. (2014). Topology reconstruction from FAU to MWW structure. Microporous and Mesoporous Materials, 200, 269-278. doi:10.1016/j.micromeso.2014.08.045

Schmidt, J. E., Chen, C.-Y., Brand, S. K., Zones, S. I., & Davis, M. E. (2016). Facile Synthesis, Characterization, and Catalytic Behavior of a Large-Pore Zeolite with the IWV Framework. Chemistry - A European Journal, 22(12), 4022-4029. doi:10.1002/chem.201504717

Girnus, I., Hoffmann, K., Marlow, F., Caro, J., & Döring, G. (1994). Large CoAPO-5 single crystals: Microwave synthesis and anisotropic optical absorption. Microporous Materials, 2(6), 537-541. doi:10.1016/0927-6513(93)e0066-p

Maekawa, H., Kubota, Y., & Sugi, Y. (2004). Hydrothermal Synthesis of [Al]-SSZ-24 from [Al]-Beta Zeolite ([Al]-BEA) as Precursors. Chemistry Letters, 33(9), 1126-1127. doi:10.1246/cl.2004.1126

Ahedi, R. K., Kubota, Y., & Sugi, Y. (2001). Journal of Materials Chemistry, 11(12), 2922-2924. doi:10.1039/b105438b

Kubota, Y., Maekawa, H., Miyata, S., Tatsumi, T., & Sugi, Y. (2007). Hydrothermal synthesis of metallosilicate SSZ-24 from metallosilicate beta as precursors. Microporous and Mesoporous Materials, 101(1-2), 115-126. doi:10.1016/j.micromeso.2006.11.037

Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0

Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., … Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834-10843. doi:10.1021/ja00053a020

Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n

Tao, Y., Kanoh, H., Abrams, L., & Kaneko, K. (2006). Mesopore-Modified Zeolites:  Preparation, Characterization, and Applications. Chemical Reviews, 106(3), 896-910. doi:10.1021/cr040204o

Prasomsri, T., Jiao, W., Weng, S. Z., & Garcia Martinez, J. (2015). Mesostructured zeolites: bridging the gap between zeolites and MCM-41. Chemical Communications, 51(43), 8900-8911. doi:10.1039/c4cc10391b

Chal, R., Cacciaguerra, T., van Donk, S., & Gérardin, C. (2010). Pseudomorphic synthesis of mesoporous zeolite Y crystals. Chemical Communications, 46(41), 7840. doi:10.1039/c0cc02073g

García-Martínez, J., Johnson, M., Valla, J., Li, K., & Ying, J. Y. (2012). Mesostructured zeolite Y—high hydrothermal stability and superior FCC catalytic performance. Catalysis Science & Technology, 2(5), 987. doi:10.1039/c2cy00309k

Liu, S., Cao, X., Li, L., Li, C., Ji, Y., & Xiao, F.-S. (2008). Preformed zeolite precursor route for synthesis of mesoporous X zeolite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 318(1-3), 269-274. doi:10.1016/j.colsurfa.2008.01.002

Díaz, U., & Corma, A. (2014). Layered zeolitic materials: an approach to designing versatile functional solids. Dalton Transactions, 43(27), 10292. doi:10.1039/c3dt53181c

Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910

Lawton, S. L., Fung, A. S., Kennedy, G. J., Alemany, L. B., Chang, C. D., Hatzikos, G. H., … Woessner, D. E. (1996). Zeolite MCM-49:  A Three-Dimensional MCM-22 Analogue Synthesized byin SituCrystallization. The Journal of Physical Chemistry, 100(9), 3788-3798. doi:10.1021/jp952871e

Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z

Corma, A., Diaz, U., Fornés, V., Guil, J. M., Martínez-Triguero, J., & Creyghton, E. J. (2000). Characterization and Catalytic Activity of MCM-22 and MCM-56 Compared with ITQ-2. Journal of Catalysis, 191(1), 218-224. doi:10.1006/jcat.1999.2774

Camblor, M. A., Corma, A., Díaz-Cabañas, M.-J., & Baerlocher, C. (1998). Synthesis and Structural Characterization of MWW Type Zeolite ITQ-1, the Pure Silica Analog of MCM-22 and SSZ-25. The Journal of Physical Chemistry B, 102(1), 44-51. doi:10.1021/jp972319k

Xu, L., Ji, X., Jiang, J.-G., Han, L., Che, S., & Wu, P. (2015). Intergrown Zeolite MWW Polymorphs Prepared by the Rapid Dissolution–Recrystallization Route. Chemistry of Materials, 27(23), 7852-7860. doi:10.1021/acs.chemmater.5b03658

Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). New Aluminosilicate and Titanosilicate Delaminated Materials Active for Acid Catalysis, and Oxidation Reactions Using H2O2. Journal of the American Chemical Society, 122(12), 2804-2809. doi:10.1021/ja9938130

Osman, M., Al-Khattaf, S., Díaz, U., Martínez, C., & Corma, A. (2016). Influencing the activity and selectivity of alkylaromatic catalytic transformations by varying the degree of delamination in MWW zeolites. Catalysis Science & Technology, 6(9), 3166-3181. doi:10.1039/c5cy01675d

RODRIGUEZ, I., CLIMENT, M., IBORRA, S., FORNES, V., & CORMA, A. (2000). Use of delaminated zeolites (ITQ-2) and mesoporous molecular sieves in the production of fine chemicals: Preparation of dimethylacetals and tetrahydropyranylation of alcohols and phenols. Journal of Catalysis, 192(2), 441-447. doi:10.1006/jcat.2000.2861

Corma, A., Fornés, V., Guil, J. ., Pergher, S., Maesen, T. L. ., & Buglass, J. . (2000). Preparation, characterisation and catalytic activity of ITQ-2, a delaminated zeolite. Microporous and Mesoporous Materials, 38(2-3), 301-309. doi:10.1016/s1387-1811(00)00149-9

Corma, A., Díaz, U., Fornés, V., Jordá, J. L., Domine, M., & Rey, F. (1999). Ti/ITQ-2, a new material highly active and selective for the epoxidation of olefins with organic hydroperoxides. Chemical Communications, (9), 779-780. doi:10.1039/a900763f

Liu, L., Díaz, U., Arenal, R., Agostini, G., Concepción, P., & Corma, A. (2016). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials, 16(1), 132-138. doi:10.1038/nmat4757

Gies, H., & Gunawardane, R. P. (1987). One-step synthesis, properties and crystal structure of aluminium-free ferrierite. Zeolites, 7(5), 442-445. doi:10.1016/0144-2449(87)90012-1

Schreyeck, L., Caullet, P., Mougenel, J. C., Guth, J. L., & Marler, B. (1996). PREFER: a new layered (alumino) silicate precursor of FER-type zeolite. Microporous Materials, 6(5-6), 259-271. doi:10.1016/0927-6513(96)00032-6

Ikeda, T., Kayamori, S., & Mizukami, F. (2009). Synthesis and crystal structure of layered silicate PLS-3 and PLS-4 as a topotactic zeolite precursor. Journal of Materials Chemistry, 19(31), 5518. doi:10.1039/b905415d

Yang, B., Jiang, J., Xu, H., Liu, Y., Peng, H., & Wu, P. (2013). Selective skeletal isomerization of 1-butene over FER-type zeolites derived from PLS-3 lamellar precursors. Applied Catalysis A: General, 455, 107-113. doi:10.1016/j.apcata.2013.01.024

Burton, A., Accardi, R. J., Lobo, R. F., Falcioni, M., & Deem, M. W. (2000). MCM-47:  A Highly Crystalline Silicate Composed of Hydrogen-Bonded Ferrierite Layers. Chemistry of Materials, 12(10), 2936-2942. doi:10.1021/cm000243q

A.Corma U.Díaz V.Fornés WO2002060815 2002.

Chica, A., Diaz, U., Fornés, V., & Corma, A. (2009). Changing the hydroisomerization to hydrocracking ratio of long chain alkanes by varying the level of delamination in zeolitic (ITQ-6) materials. Catalysis Today, 147(3-4), 179-185. doi:10.1016/j.cattod.2008.10.046

Marler, B., Wang, Y., Song, J., & Gies, H. (2014). Topotactic condensation of layer silicates with ferrierite-type layers forming porous tectosilicates. Dalton Trans., 43(27), 10396-10416. doi:10.1039/c4dt00262h

Dorset, D. L., & Kennedy, G. J. (2004). Crystal Structure of MCM-65:  An Alternative Linkage of Ferrierite Layers. The Journal of Physical Chemistry B, 108(39), 15216-15222. doi:10.1021/jp040305q

Ikeda, T., Akiyama, Y., Oumi, Y., Kawai, A., & Mizukami, F. (2004). The Topotactic Conversion of a Novel Layered Silicate into a New Framework Zeolite. Angewandte Chemie International Edition, 43(37), 4892-4896. doi:10.1002/anie.200460168

Ikeda, T., Akiyama, Y., Oumi, Y., Kawai, A., & Mizukami, F. (2004). The Topotactic Conversion of a Novel Layered Silicate into a New Framework Zeolite. Angewandte Chemie, 116(37), 5000-5004. doi:10.1002/ange.200460168

Tsunoji, N., Ikeda, T., Ide, Y., Sadakane, M., & Sano, T. (2012). Synthesis and characteristics of novel layered silicates HUS-2 and HUS-3 derived from a SiO2–choline hydroxide–NaOH–H2O system. Journal of Materials Chemistry, 22(27), 13682. doi:10.1039/c2jm31872e

Wu, P., Ruan, J., Wang, L., Wu, L., Wang, Y., Liu, Y., … Tatsumi, T. (2008). Methodology for Synthesizing Crystalline Metallosilicates with Expanded Pore Windows Through Molecular Alkoxysilylation of Zeolitic Lamellar Precursors. Journal of the American Chemical Society, 130(26), 8178-8187. doi:10.1021/ja0758739

Martínez-Franco, R., Paris, C., Martínez-Triguero, J., Moliner, M., & Corma, A. (2017). Direct synthesis of the aluminosilicate form of the small pore CDO zeolite with novel OSDAs and the expanded polymorphs. Microporous and Mesoporous Materials, 246, 147-157. doi:10.1016/j.micromeso.2017.03.014

T. V.Whittam US Pat 4397825 1983.

Zanardi, S., Alberti, A., Cruciani, G., Corma, A., Fornés, V., & Brunelli, M. (2004). Crystal Structure Determination of Zeolite Nu-6(2) and Its Layered Precursor Nu-6(1). Angewandte Chemie International Edition, 43(37), 4933-4937. doi:10.1002/anie.200460085

Zanardi, S., Alberti, A., Cruciani, G., Corma, A., Fornés, V., & Brunelli, M. (2004). Crystal Structure Determination of Zeolite Nu-6(2) and Its Layered Precursor Nu-6(1). Angewandte Chemie, 116(37), 5041-5045. doi:10.1002/ange.200460085

Andrews, S. J., Papiz, M. Z., McMeeking, R., Blake, A. J., Lowe, B. M., Franklin, K. R., … Harding, M. M. (1988). Piperazine silicate (EU 19): the structure of a very small crystal determined with synchrotron radiation. Acta Crystallographica Section B Structural Science, 44(1), 73-77. doi:10.1107/s0108768187009820

Marler, B., Camblor, M. A., & Gies, H. (2006). The disordered structure of silica zeolite EU-20b, obtained by topotactic condensation of the piperazinium containing layer silicate EU-19. Microporous and Mesoporous Materials, 90(1-3), 87-101. doi:10.1016/j.micromeso.2005.10.047

Sun, J., Bonneau, C., Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Moliner, M., … Zou, X. (2009). The ITQ-37 mesoporous chiral zeolite. Nature, 458(7242), 1154-1157. doi:10.1038/nature07957

Paillaud, J.-L. (2004). Extra-Large-Pore Zeolites with Two-Dimensional Channels Formed by 14 and 12 Rings. Science, 304(5673), 990-992. doi:10.1126/science.1098242

Roth, W. J., Shvets, O. V., Shamzhy, M., Chlubná, P., Kubů, M., Nachtigall, P., & Čejka, J. (2011). Postsynthesis Transformation of Three-Dimensional Framework into a Lamellar Zeolite with Modifiable Architecture. Journal of the American Chemical Society, 133(16), 6130-6133. doi:10.1021/ja200741r

Kasian, N., Tuel, A., Verheyen, E., Kirschhock, C. E. A., Taulelle, F., & Martens, J. A. (2014). NMR Evidence for Specific Germanium Siting in IM-12 Zeolite. Chemistry of Materials, 26(19), 5556-5565. doi:10.1021/cm502525w

Corma, A., Rey, F., Valencia, S., Jordá, J. L., & Rius, J. (2003). A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity. Nature Materials, 2(7), 493-497. doi:10.1038/nmat921

Castañeda, R., Corma, A., Fornés, V., Rey, F., & Rius, J. (2003). Synthesis of a New Zeolite Structure ITQ-24, with Intersecting 10- and 12-Membered Ring Pores. Journal of the American Chemical Society, 125(26), 7820-7821. doi:10.1021/ja035534p

Corma, A., Puche, M., Rey, F., Sankar, G., & Teat, S. J. (2003). A Zeolite Structure (ITQ-13) with Three Sets of Medium-Pore Crossing Channels Formed by9- and 10-Rings. Angewandte Chemie International Edition, 42(10), 1156-1159. doi:10.1002/anie.200390304

Corma, A., Puche, M., Rey, F., Sankar, G., & Teat, S. J. (2003). Angewandte Chemie, 115(10), 1188-1191. doi:10.1002/ange.200390275

Mazur, M., Chlubná-Eliášová, P., Roth, W. J., & Čejka, J. (2014). Intercalation chemistry of layered zeolite precursor IPC-1P. Catalysis Today, 227, 37-44. doi:10.1016/j.cattod.2013.10.051

Chlubná-Eliášová, P., Tian, Y., Pinar, A. B., Kubů, M., Čejka, J., & Morris, R. E. (2014). The Assembly-Disassembly-Organization-Reassembly Mechanism for 3D-2D-3D Transformation of Germanosilicate IWW Zeolite. Angewandte Chemie International Edition, 53(27), 7048-7052. doi:10.1002/anie.201400600

Chlubná-Eliášová, P., Tian, Y., Pinar, A. B., Kubů, M., Čejka, J., & Morris, R. E. (2014). The Assembly-Disassembly-Organization-Reassembly Mechanism for 3D-2D-3D Transformation of Germanosilicate IWW Zeolite. Angewandte Chemie, 126(27), 7168-7172. doi:10.1002/ange.201400600

Kasneryk, V., Shamzhy, M., Opanasenko, M., Wheatley, P. S., Morris, S. A., Russell, S. E., … Morris, R. E. (2017). Expansion of the ADOR Strategy for the Synthesis of Zeolites: The Synthesis of IPC-12 from Zeolite UOV. Angewandte Chemie International Edition, 56(15), 4324-4327. doi:10.1002/anie.201700590

Kasneryk, V., Shamzhy, M., Opanasenko, M., Wheatley, P. S., Morris, S. A., Russell, S. E., … Morris, R. E. (2017). Expansion of the ADOR Strategy for the Synthesis of Zeolites: The Synthesis of IPC-12 from Zeolite UOV. Angewandte Chemie, 129(15), 4388-4391. doi:10.1002/ange.201700590

Firth, D. S., Morris, S. A., Wheatley, P. S., Russell, S. E., Slawin, A. M. Z., Dawson, D. M., … Morris, R. E. (2017). Assembly–Disassembly–Organization–Reassembly Synthesis of Zeolites Based on cfi-Type Layers. Chemistry of Materials, 29(13), 5605-5611. doi:10.1021/acs.chemmater.7b01181

Zones, S. I. (2011). Translating new materials discoveries in zeolite research to commercial manufacture. Microporous and Mesoporous Materials, 144(1-3), 1-8. doi:10.1016/j.micromeso.2011.03.039

Gates, B. C., Flytzani-Stephanopoulos, M., Dixon, D. A., & Katz, A. (2017). Atomically dispersed supported metal catalysts: perspectives and suggestions for future research. Catalysis Science & Technology, 7(19), 4259-4275. doi:10.1039/c7cy00881c

Tomkins, P., Ranocchiari, M., & van Bokhoven, J. A. (2017). Direct Conversion of Methane to Methanol under Mild Conditions over Cu-Zeolites and beyond. Accounts of Chemical Research, 50(2), 418-425. doi:10.1021/acs.accounts.6b00534

Beale, A. M., Gao, F., Lezcano-Gonzalez, I., Peden, C. H. F., & Szanyi, J. (2015). Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chemical Society Reviews, 44(20), 7371-7405. doi:10.1039/c5cs00108k

Moliner, M., & Corma, A. (2018). General Aspects on Structure and Reactivity of Framework and Extra-framework Metals in Zeolite Materials. Structure and Reactivity of Metals in Zeolite Materials, 53-90. doi:10.1007/430_2017_21

A. W.Burton WO2014/099261 2014;

Martínez-Franco, R., Paris, C., Martínez-Armero, M. E., Martínez, C., Moliner, M., & Corma, A. (2016). High-silica nanocrystalline Beta zeolites: efficient synthesis and catalytic application. Chemical Science, 7(1), 102-108. doi:10.1039/c5sc03019f

Gallego, E. M., Paris, C., Díaz-Rey, M. R., Martínez-Armero, M. E., Martínez-Triguero, J., Martínez, C., … Corma, A. (2017). Simple organic structure directing agents for synthesizing nanocrystalline zeolites. Chemical Science, 8(12), 8138-8149. doi:10.1039/c7sc02858j

Bereciartua, P. J., Cantín, Á., Corma, A., Jordá, J. L., Palomino, M., Rey, F., … Casty, G. L. (2017). Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science, 358(6366), 1068-1071. doi:10.1126/science.aao0092

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem