Mostrar el registro sencillo del ítem
dc.contributor.author | Li, Chengeng | es_ES |
dc.contributor.author | Moliner Marin, Manuel | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.date.accessioned | 2020-10-29T04:32:12Z | |
dc.date.available | 2020-10-29T04:32:12Z | |
dc.date.issued | 2018-11-19 | es_ES |
dc.identifier.issn | 1433-7851 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/153467 | |
dc.description | This is the peer reviewed version of the following article: Angew. Chem. Int. Ed. 2018, 57, 15330 15353, which has been published in final form at https://doi.org/10.1002/anie.201711422. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. | es_ES |
dc.description.abstract | [EN] Since the early reports by Barrer in the 1940s on converting natural minerals into synthetic zeolites, the use of precrystallized zeolites as crucial inorganic directing agents to synthesize other crystalline zeolites with improved physicochemical properties has become a very important research field, allowing the design, particularly in recent years, of new industrial catalysts. This Review highlights how the presence of some crystalline fragments in the synthesis media, such as small secondary building units (SBUs) or layered substructures, not only favors the crystallization of other zeolites with similar SBUs or layers, but also permits control over important parameters affecting their catalytic activity (chemical composition, crystal size, or porosity, etc.). Recent advances in the preparation of 3D and 2D zeolites through seeding and zeolite-to-zeolite transformation processes will be discussed extensively in this Review, including their preparation in the presence or absence of organic structure-directing agents (OSDAs). The aim is to introduce general guidelines for more efficient approaches for target zeolites. | es_ES |
dc.description.sponsorship | This work has been supported by the Spanish Government (MINECO through "Severo Ochoa" (SEV-2016-0683) and MAT2015-71261-R), by the European Union through ERC-AdG-2014-671093 (SynCatMatch), and by the Fundacion Ramon Areces (through the "Life and Materials Science" program). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Angewandte Chemie International Edition | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Crystallization | es_ES |
dc.subject | Interzeolite transformation | es_ES |
dc.subject | OSDAs | es_ES |
dc.subject | Zeolites | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Building zeolites from precrystallized units: nanoscale architecture | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/anie.201711422 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2015-71261-R/ES/DISEÑO RACIONAL DE MATERIALES ZEOLITICOS CON CENTROS METALICOS PARA SU APLICACION EN PROCESOS QUIMICOS SOSTENIBLES, MEDIOAMBIENTALES Y ENERGIAS RENOVABLES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Li, C.; Moliner Marin, M.; Corma Canós, A. (2018). Building zeolites from precrystallized units: nanoscale architecture. Angewandte Chemie International Edition. 57(47):15330-15353. https://doi.org/10.1002/anie.201711422 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/anie.201711422 | es_ES |
dc.description.upvformatpinicio | 15330 | es_ES |
dc.description.upvformatpfin | 15353 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 57 | es_ES |
dc.description.issue | 47 | es_ES |
dc.identifier.pmid | 29364578 | es_ES |
dc.relation.pasarela | S\383409 | es_ES |
dc.contributor.funder | Fundación Ramón Areces | es_ES |
dc.contributor.funder | European Research Council | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | European Commission | |
dc.description.references | Cundy, C. S., & Cox, P. A. (2005). The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, 82(1-2), 1-78. doi:10.1016/j.micromeso.2005.02.016 | es_ES |
dc.description.references | Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014 | es_ES |
dc.description.references | Čejka, J., Centi, G., Perez-Pariente, J., & Roth, W. J. (2012). Zeolite-based materials for novel catalytic applications: Opportunities, perspectives and open problems. Catalysis Today, 179(1), 2-15. doi:10.1016/j.cattod.2011.10.006 | es_ES |
dc.description.references | http://www.iza-structure.org/databases/. | es_ES |
dc.description.references | Corma, A., & Davis, M. E. (2004). Issues in the Synthesis of Crystalline Molecular Sieves: Towards the Crystallization of Low Framework-Density Structures. ChemPhysChem, 5(3), 304-313. doi:10.1002/cphc.200300997 | es_ES |
dc.description.references | Kerr, G. T. (1966). Chemistry of Crystalline Aluminosilicates. I. Factors Affecting the Formation of Zeolite A. The Journal of Physical Chemistry, 70(4), 1047-1050. doi:10.1021/j100876a015 | es_ES |
dc.description.references | Derouane, E. G., Determmerie, S., Gabelica, Z., & Blom, N. (1981). Synthesis and characterization of ZSM-5 type zeolites I. physico-chemical properties of precursors and intermediates. Applied Catalysis, 1(3-4), 201-224. doi:10.1016/0166-9834(81)80007-3 | es_ES |
dc.description.references | Chang, C. D., & Bell, A. T. (1991). Studies on the mechanism of ZSM-5 formation. Catalysis Letters, 8(5-6), 305-316. doi:10.1007/bf00764192 | es_ES |
dc.description.references | Burkett, S. L., & Davis, M. E. (1994). Mechanism of Structure Direction in the Synthesis of Si-ZSM-5: An Investigation by Intermolecular 1H-29Si CP MAS NMR. The Journal of Physical Chemistry, 98(17), 4647-4653. doi:10.1021/j100068a027 | es_ES |
dc.description.references | Li, J., Corma, A., & Yu, J. (2015). Synthesis of new zeolite structures. Chemical Society Reviews, 44(20), 7112-7127. doi:10.1039/c5cs00023h | es_ES |
dc.description.references | Davis, M. E. (2013). Zeolites from a Materials Chemistry Perspective. Chemistry of Materials, 26(1), 239-245. doi:10.1021/cm401914u | es_ES |
dc.description.references | Moliner, M., Martínez, C., & Corma, A. (2015). Multipore Zeolites: Synthesis and Catalytic Applications. Angewandte Chemie International Edition, 54(12), 3560-3579. doi:10.1002/anie.201406344 | es_ES |
dc.description.references | Moliner, M., Martínez, C., & Corma, A. (2015). Multiporige Zeolithe: Synthese und Anwendungen bei der Katalyse. Angewandte Chemie, 127(12), 3630-3649. doi:10.1002/ange.201406344 | es_ES |
dc.description.references | Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121 | es_ES |
dc.description.references | Barrer, R. M., & Denny, P. J. (1961). 201. Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates. Journal of the Chemical Society (Resumed), 971. doi:10.1039/jr9610000971 | es_ES |
dc.description.references | Moliner, M., Rey, F., & Corma, A. (2013). Towards the Rational Design of Efficient Organic Structure-Directing Agents for Zeolite Synthesis. Angewandte Chemie International Edition, 52(52), 13880-13889. doi:10.1002/anie.201304713 | es_ES |
dc.description.references | Moliner, M., Rey, F., & Corma, A. (2013). Rationales Design von effizienten organischen strukturdirigierenden Reagentien für die Zeolithsynthese. Angewandte Chemie, 125(52), 14124-14134. doi:10.1002/ange.201304713 | es_ES |
dc.description.references | Burton, A. W., & Zones, S. I. (2007). Organic Molecules in Zeolite Synthesis: Their Preparation and Structure-Directing Effects. Introduction to Zeolite Science and Practice, 137-179. doi:10.1016/s0167-2991(07)80793-2 | es_ES |
dc.description.references | Dorset, D. L., Kennedy, G. J., Strohmaier, K. G., Diaz-Cabañas, M. J., Rey, F., & Corma, A. (2006). P-Derived Organic Cations as Structure-Directing Agents: Synthesis of a High-Silica Zeolite (ITQ-27) with a Two-Dimensional 12-Ring Channel System. Journal of the American Chemical Society, 128(27), 8862-8867. doi:10.1021/ja061206o | es_ES |
dc.description.references | Simancas, R., Dari, D., Velamazan, N., Navarro, M. T., Cantin, A., Jorda, J. L., … Rey, F. (2010). Modular Organic Structure-Directing Agents for the Synthesis of Zeolites. Science, 330(6008), 1219-1222. doi:10.1126/science.1196240 | es_ES |
dc.description.references | Blasco, T., Corma, A., Díaz-Cabañas, M. J., Rey, F., Vidal-Moya, J. A., & Zicovich-Wilson, C. M. (2002). Preferential Location of Ge in the Double Four-Membered Ring Units of ITQ-7 Zeolite. The Journal of Physical Chemistry B, 106(10), 2634-2642. doi:10.1021/jp013302b | es_ES |
dc.description.references | Corma, A., Díaz-Cabañas, M. J., Rey, F., Nicolopoulus, S., & Boulahya, K. (2004). ITQ-15: The first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14- and 12-ring channels, and its catalytic implications. Chem. Commun., (12), 1356-1357. doi:10.1039/b406572g | es_ES |
dc.description.references | Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238 | es_ES |
dc.description.references | Jiang, J., Yu, J., & Corma, A. (2010). Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angewandte Chemie International Edition, 49(18), 3120-3145. doi:10.1002/anie.200904016 | es_ES |
dc.description.references | Jiang, J., Yu, J., & Corma, A. (2010). Zeolithe mit sehr großen Poren als Bindeglied zwischen mikro- und mesoporösen Strukturen. Angewandte Chemie, 122(18), 3186-3212. doi:10.1002/ange.200904016 | es_ES |
dc.description.references | Sano, T., Itakura, M., & Sadakane, M. (2013). High Potential of Interzeolite Conversion Method for Zeolite Synthesis. Journal of the Japan Petroleum Institute, 56(4), 183-197. doi:10.1627/jpi.56.183 | es_ES |
dc.description.references | Goel, S., Zones, S. I., & Iglesia, E. (2015). Synthesis of Zeolites via Interzeolite Transformations without Organic Structure-Directing Agents. Chemistry of Materials, 27(6), 2056-2066. doi:10.1021/cm504510f | es_ES |
dc.description.references | Martín, N., Moliner, M., & Corma, A. (2015). High yield synthesis of high-silica chabazite by combining the role of zeolite precursors and tetraethylammonium: SCR of NOx. Chemical Communications, 51(49), 9965-9968. doi:10.1039/c5cc02670a | es_ES |
dc.description.references | Sonoda, T., Maruo, T., Yamasaki, Y., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2015). Synthesis of high-silica AEI zeolites with enhanced thermal stability by hydrothermal conversion of FAU zeolites, and their activity in the selective catalytic reduction of NOx with NH3. Journal of Materials Chemistry A, 3(2), 857-865. doi:10.1039/c4ta05621c | es_ES |
dc.description.references | D.Xie S. I.Zones C. M.Lew T. M.Davis WO2016/003504 2016. | es_ES |
dc.description.references | Jon, H., Ikawa, N., Oumi, Y., & Sano, T. (2008). An Insight into the Process Involved in Hydrothermal Conversion of FAU to *BEA Zeolite. Chemistry of Materials, 20(12), 4135-4141. doi:10.1021/cm703676y | es_ES |
dc.description.references | Goto, I., Itakura, M., Shibata, S., Honda, K., Ide, Y., Sadakane, M., & Sano, T. (2012). Transformation of LEV-type zeolite into less dense CHA-type zeolite. Microporous and Mesoporous Materials, 158, 117-122. doi:10.1016/j.micromeso.2012.03.032 | es_ES |
dc.description.references | Goel, S., Zones, S. I., & Iglesia, E. (2014). Encapsulation of Metal Clusters within MFI via Interzeolite Transformations and Direct Hydrothermal Syntheses and Catalytic Consequences of Their Confinement. Journal of the American Chemical Society, 136(43), 15280-15290. doi:10.1021/ja507956m | es_ES |
dc.description.references | Zones, S. I. (1991). Conversion of faujasites to high-silica chabazite SSZ-13 in the presence of N,N,N-trimethyl-1-adamantammonium iodide. Journal of the Chemical Society, Faraday Transactions, 87(22), 3709. doi:10.1039/ft9918703709 | es_ES |
dc.description.references | Inoue, T., Itakura, M., Jon, H., Oumi, Y., Takahashi, A., Fujitani, T., & Sano, T. (2009). Synthesis of LEV zeolite by interzeolite conversion method and its catalytic performance in ethanol to olefins reaction. Microporous and Mesoporous Materials, 122(1-3), 149-154. doi:10.1016/j.micromeso.2009.02.027 | es_ES |
dc.description.references | Itakura, M., Goto, I., Takahashi, A., Fujitani, T., Ide, Y., Sadakane, M., & Sano, T. (2011). Synthesis of high-silica CHA type zeolite by interzeolite conversion of FAU type zeolite in the presence of seed crystals. Microporous and Mesoporous Materials, 144(1-3), 91-96. doi:10.1016/j.micromeso.2011.03.041 | es_ES |
dc.description.references | Martín, N., Boruntea, C. R., Moliner, M., & Corma, A. (2015). Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications. Chemical Communications, 51(55), 11030-11033. doi:10.1039/c5cc03200h | es_ES |
dc.description.references | Inagaki, S., Tsuboi, Y., Nishita, Y., Syahylah, T., Wakihara, T., & Kubota, Y. (2013). Rapid Synthesis of an Aluminum-Rich MSE-Type Zeolite by the Hydrothermal Conversion of an FAU-Type Zeolite. Chemistry - A European Journal, 19(24), 7780-7786. doi:10.1002/chem.201300125 | es_ES |
dc.description.references | Zones, S. I., & Nakagawa, Y. (1995). Use of modified zeolites as reagents influencing nucleation in zeolite synthesis. Studies in Surface Science and Catalysis, 45-52. doi:10.1016/s0167-2991(06)81871-9 | es_ES |
dc.description.references | Fan, W., Wu, P., Namba, S., & Tatsumi, T. (2004). A Titanosilicate That Is Structurally Analogous to an MWW-Type Lamellar Precursor. Angewandte Chemie International Edition, 43(2), 236-240. doi:10.1002/anie.200352723 | es_ES |
dc.description.references | Fan, W., Wu, P., Namba, S., & Tatsumi, T. (2004). A Titanosilicate That Is Structurally Analogous to an MWW-Type Lamellar Precursor. Angewandte Chemie, 116(2), 238-242. doi:10.1002/ange.200352723 | es_ES |
dc.description.references | De Baerdemaeker, T., Feyen, M., Vanbergen, T., Müller, U., Yilmaz, B., Xiao, F.-S., … Gies, H. (2014). From Layered Zeolite Precursors to Zeolites with a Three-Dimensional Porosity: Textural and Structural Modifications through Alkaline Treatment. Chemistry of Materials, 27(1), 316-326. doi:10.1021/cm504014d | es_ES |
dc.description.references | Iyoki, K., Itabashi, K., & Okubo, T. (2014). Progress in seed-assisted synthesis of zeolites without using organic structure-directing agents. Microporous and Mesoporous Materials, 189, 22-30. doi:10.1016/j.micromeso.2013.08.008 | es_ES |
dc.description.references | Honda, K., Itakura, M., Matsuura, Y., Onda, A., Ide, Y., Sadakane, M., & Sano, T. (2013). Role of Structural Similarity Between Starting Zeolite and Product Zeolite in the Interzeolite Conversion Process. Journal of Nanoscience and Nanotechnology, 13(4), 3020-3026. doi:10.1166/jnn.2013.7356 | es_ES |
dc.description.references | Barrer, R. M. (1948). 33. Synthesis of a zeolitic mineral with chabazite-like sorptive properties. Journal of the Chemical Society (Resumed), 127. doi:10.1039/jr9480000127 | es_ES |
dc.description.references | Barrer, R. M., & Riley, D. W. (1948). 34. Sorptive and molecular-sieve properties of a new zeolitic mineral. Journal of the Chemical Society (Resumed), 133. doi:10.1039/jr9480000133 | es_ES |
dc.description.references | Barrer, R. M., Cole, J. F., & Sticher, H. (1968). Chemistry of soil minerals. Part V. Low temperature hydrothermal transformations of kaolinite. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 2475. doi:10.1039/j19680002475 | es_ES |
dc.description.references | Subotić, B., Škrtić, D., Šmit, I., & Sekovanić, L. (1980). Transformation of zeolite A into hydroxysodalite. Journal of Crystal Growth, 50(2), 498-508. doi:10.1016/0022-0248(80)90099-8 | es_ES |
dc.description.references | Subotić, B., & Sekovanić, L. (1986). Transformation of zeolite A into hydroxysodalite. Journal of Crystal Growth, 75(3), 561-572. doi:10.1016/0022-0248(86)90102-8 | es_ES |
dc.description.references | Subotić, B., Šmit, I., Madžija, O., & Sekovanić, L. (1982). Kinetic study of the transformation of zeolite A into zeolite P. Zeolites, 2(2), 135-142. doi:10.1016/s0144-2449(82)80015-8 | es_ES |
dc.description.references | Khodabandeh, S., & Davis, M. E. (1997). Synthesis of CIT-3: a calcium aluminosilicate with the heulandite topology. Microporous Materials, 9(3-4), 149-160. doi:10.1016/s0927-6513(96)00098-3 | es_ES |
dc.description.references | Khodabandeh, S., Lee, G., & Davis, M. E. (1997). CIT-4: The first synthetic analogue of brewsterite. Microporous Materials, 11(1-2), 87-95. doi:10.1016/s0927-6513(97)00036-9 | es_ES |
dc.description.references | Yashiki, A., Honda, K., Fujimoto, A., Shibata, S., Ide, Y., Sadakane, M., & Sano, T. (2011). Hydrothermal conversion of FAU zeolite into LEV zeolite in the presence of non-calcined seed crystals. Journal of Crystal Growth, 325(1), 96-100. doi:10.1016/j.jcrysgro.2011.04.040 | es_ES |
dc.description.references | Honda, K., Yashiki, A., Itakura, M., Ide, Y., Sadakane, M., & Sano, T. (2011). Influence of seeding on FAU–∗BEA interzeolite conversions. Microporous and Mesoporous Materials, 142(1), 161-167. doi:10.1016/j.micromeso.2010.11.031 | es_ES |
dc.description.references | Kerr, G. T. (1968). Chemistry of crystalline aluminosilicates. IV. Factors affecting the formation of zeolites X and B. The Journal of Physical Chemistry, 72(4), 1385-1386. doi:10.1021/j100850a056 | es_ES |
dc.description.references | Xie, B., Song, J., Ren, L., Ji, Y., Li, J., & Xiao, F.-S. (2008). Organotemplate-Free and Fast Route for Synthesizing Beta Zeolite. Chemistry of Materials, 20(14), 4533-4535. doi:10.1021/cm801167e | es_ES |
dc.description.references | Majano, G., Delmotte, L., Valtchev, V., & Mintova, S. (2009). Al-Rich Zeolite Beta by Seeding in the Absence of Organic Template. Chemistry of Materials, 21(18), 4184-4191. doi:10.1021/cm900462u | es_ES |
dc.description.references | Kamimura, Y., Chaikittisilp, W., Itabashi, K., Shimojima, A., & Okubo, T. (2010). Critical Factors in the Seed-Assisted Synthesis of Zeolite Beta and «Green Beta» from OSDA-Free Na+-Aluminosilicate Gels. Chemistry - An Asian Journal, 5(10), 2182-2191. doi:10.1002/asia.201000234 | es_ES |
dc.description.references | Xie, B., Zhang, H., Yang, C., Liu, S., Ren, L., Zhang, L., … Xiao, F.-S. (2011). Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates. Chemical Communications, 47(13), 3945. doi:10.1039/c0cc05414c | es_ES |
dc.description.references | Kamimura, Y., Tanahashi, S., Itabashi, K., Sugawara, A., Wakihara, T., Shimojima, A., & Okubo, T. (2010). Crystallization Behavior of Zeolite Beta in OSDA-Free, Seed-Assisted Synthesis. The Journal of Physical Chemistry C, 115(3), 744-750. doi:10.1021/jp1098975 | es_ES |
dc.description.references | Iyoki, K., Kamimura, Y., Itabashi, K., Shimojima, A., & Okubo, T. (2010). Synthesis of MTW-type Zeolites in the Absence of Organic Structure-directing Agent. Chemistry Letters, 39(7), 730-731. doi:10.1246/cl.2010.730 | es_ES |
dc.description.references | Majano, G., Darwiche, A., Mintova, S., & Valtchev, V. (2009). Seed-Induced Crystallization of Nanosized Na-ZSM-5 Crystals. Industrial & Engineering Chemistry Research, 48(15), 7084-7091. doi:10.1021/ie8017252 | es_ES |
dc.description.references | Zhang, H., Guo, Q., Ren, L., Yang, C., Zhu, L., Meng, X., … Xiao, F.-S. (2011). Organotemplate-free synthesis of high-silica ferrierite zeolite induced by CDO-structure zeolite building units. Journal of Materials Chemistry, 21(26), 9494. doi:10.1039/c1jm11786f | es_ES |
dc.description.references | Yokoi, T., Yoshioka, M., Imai, H., & Tatsumi, T. (2009). Diversification of RTH-Type Zeolite and Its Catalytic Application. Angewandte Chemie International Edition, 48(52), 9884-9887. doi:10.1002/anie.200905214 | es_ES |
dc.description.references | Yokoi, T., Yoshioka, M., Imai, H., & Tatsumi, T. (2009). Diversification of RTH-Type Zeolite and Its Catalytic Application. Angewandte Chemie, 121(52), 10068-10071. doi:10.1002/ange.200905214 | es_ES |
dc.description.references | Itabashi, K., Kamimura, Y., Iyoki, K., Shimojima, A., & Okubo, T. (2012). A Working Hypothesis for Broadening Framework Types of Zeolites in Seed-Assisted Synthesis without Organic Structure-Directing Agent. Journal of the American Chemical Society, 134(28), 11542-11549. doi:10.1021/ja3022335 | es_ES |
dc.description.references | Zones, S. I. (1990). Direct hydrothermal conversion of cubic P zeolite to organozeolite SSZ-13. Journal of the Chemical Society, Faraday Transactions, 86(20), 3467. doi:10.1039/ft9908603467 | es_ES |
dc.description.references | Chan, I. Y., & Zones, S. I. (1989). Analytical electron microscopy (AEM) of cubic P zeolite to Nu-3 zeolite transformation. Zeolites, 9(1), 3-11. doi:10.1016/0144-2449(89)90002-x | es_ES |
dc.description.references | Jon, H., Nakahata, K., Lu, B., Oumi, Y., & Sano, T. (2006). Hydrothermal conversion of FAU into ∗BEA zeolites. Microporous and Mesoporous Materials, 96(1-3), 72-78. doi:10.1016/j.micromeso.2006.06.024 | es_ES |
dc.description.references | Jon, H., Sasaki, H., Inoue, T., Itakura, M., Takahashi, S., Oumi, Y., & Sano, T. (2008). Effects of structure-directing agents on hydrothermal conversion of FAU type zeolite. Studies in Surface Science and Catalysis, 229-232. doi:10.1016/s0167-2991(08)80184-x | es_ES |
dc.description.references | Jon, H., Takahashi, S., Sasaki, H., Oumi, Y., & Sano, T. (2008). Hydrothermal conversion of FAU zeolite into RUT zeolite in TMAOH system. Microporous and Mesoporous Materials, 113(1-3), 56-63. doi:10.1016/j.micromeso.2007.11.003 | es_ES |
dc.description.references | Roth, W. J., Nachtigall, P., Morris, R. E., & Čejka, J. (2014). Two-Dimensional Zeolites: Current Status and Perspectives. Chemical Reviews, 114(9), 4807-4837. doi:10.1021/cr400600f | es_ES |
dc.description.references | Roth, W. J., Kresge, C. T., Vartuli, J. C., Leonowicz, M. E., Fung, A. S., & McCullen, S. B. (1995). MCM-36: The first pillared molecular sieve with zeoliteproperties. Catalysis by Microporous Materials, Proceedings of ZEOCAT ’95, 301-308. doi:10.1016/s0167-2991(06)81236-x | es_ES |
dc.description.references | Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592 | es_ES |
dc.description.references | Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). AlITQ-6 and TiITQ-6: Synthesis, Characterization, and Catalytic Activity. Angewandte Chemie International Edition, 39(8), 1499-1501. doi:10.1002/(sici)1521-3773(20000417)39:8<1499::aid-anie1499>3.0.co;2-0 | es_ES |
dc.description.references | Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). AlITQ-6 and TiITQ-6: Synthesis, Characterization, and Catalytic Activity. Angewandte Chemie, 112(8), 1559-1561. doi:10.1002/(sici)1521-3757(20000417)112:8<1559::aid-ange1559>3.0.co;2-u | es_ES |
dc.description.references | Corma, A., Fornés, V., & Díaz, U. (2001). Chemical Communications, (24), 2642-2643. doi:10.1039/b108777k | es_ES |
dc.description.references | Roth, W. J., & Čejka, J. (2011). Two-dimensional zeolites: dream or reality? Catalysis Science & Technology, 1(1), 43. doi:10.1039/c0cy00027b | es_ES |
dc.description.references | C. T.Kresge W. J.Roth U.S. Patent 5266541 1993. | es_ES |
dc.description.references | Eliášová, P., Opanasenko, M., Wheatley, P. S., Shamzhy, M., Mazur, M., Nachtigall, P., … Čejka, J. (2015). The ADOR mechanism for the synthesis of new zeolites. Chemical Society Reviews, 44(20), 7177-7206. doi:10.1039/c5cs00045a | es_ES |
dc.description.references | Roth, W. J., Nachtigall, P., Morris, R. E., Wheatley, P. S., Seymour, V. R., Ashbrook, S. E., … Čejka, J. (2013). A family of zeolites with controlled pore size prepared using a top-down method. Nature Chemistry, 5(7), 628-633. doi:10.1038/nchem.1662 | es_ES |
dc.description.references | Verheyen, E., Joos, L., Van Havenbergh, K., Breynaert, E., Kasian, N., Gobechiya, E., … Martens, J. A. (2012). Design of zeolite by inverse sigma transformation. Nature Materials, 11(12), 1059-1064. doi:10.1038/nmat3455 | es_ES |
dc.description.references | Khodabandeh, S., & Davis, M. E. (1997). Zeolites P1 and L as precursors for the preparation of alkaline-earth zeolites. Microporous Materials, 12(4-6), 347-359. doi:10.1016/s0927-6513(97)00083-7 | es_ES |
dc.description.references | Khodabandeh, S., & Davis, M. E. (1997). Alteration of perlite to calcium zeolites. Microporous Materials, 9(3-4), 161-172. doi:10.1016/s0927-6513(96)00100-9 | es_ES |
dc.description.references | Van Tendeloo, L., Gobechiya, E., Breynaert, E., Martens, J. A., & Kirschhock, C. E. A. (2013). Alkaline cations directing the transformation of FAU zeolites into five different framework types. Chemical Communications, 49(100), 11737. doi:10.1039/c3cc47292b | es_ES |
dc.description.references | Nedyalkova, R., Montreuil, C., Lambert, C., & Olsson, L. (2013). Interzeolite Conversion of FAU Type Zeolite into CHA and its Application in NH3-SCR. Topics in Catalysis, 56(9-10), 550-557. doi:10.1007/s11244-013-0015-4 | es_ES |
dc.description.references | Ji, Y., Deimund, M. A., Bhawe, Y., & Davis, M. E. (2015). Organic-Free Synthesis of CHA-Type Zeolite Catalysts for the Methanol-to-Olefins Reaction. ACS Catalysis, 5(7), 4456-4465. doi:10.1021/acscatal.5b00404 | es_ES |
dc.description.references | D.Xie WO2016/122724 2016. | es_ES |
dc.description.references | Daniels, R. H., Kerr, G. T., & Rollmann, L. D. (1978). Cationic polymers as templates in zeolite crystallization. Journal of the American Chemical Society, 100(10), 3097-3100. doi:10.1021/ja00478a024 | es_ES |
dc.description.references | Honda, K., Yashiki, A., Sadakane, M., & Sano, T. (2014). Hydrothermal conversion of FAU and ∗BEA-type zeolites into MAZ-type zeolites in the presence of non-calcined seed crystals. Microporous and Mesoporous Materials, 196, 254-260. doi:10.1016/j.micromeso.2014.05.028 | es_ES |
dc.description.references | De Baerdemaeker, T., Yilmaz, B., Müller, U., Feyen, M., Xiao, F.-S., Zhang, W., … De Vos, D. (2013). Catalytic applications of OSDA-free Beta zeolite. Journal of Catalysis, 308, 73-81. doi:10.1016/j.jcat.2013.05.025 | es_ES |
dc.description.references | Kamimura, Y., Itabashi, K., & Okubo, T. (2012). Seed-assisted, OSDA-free synthesis of MTW-type zeolite and «Green MTW» from sodium aluminosilicate gel systems. Microporous and Mesoporous Materials, 147(1), 149-156. doi:10.1016/j.micromeso.2011.05.038 | es_ES |
dc.description.references | Kamimura, Y., Itabashi, K., Kon, Y., Endo, A., & Okubo, T. (2017). Seed-Assisted Synthesis of MWW-Type Zeolite with Organic Structure-Directing Agent-Free Na-Aluminosilicate Gel System. Chemistry - An Asian Journal, 12(5), 530-542. doi:10.1002/asia.201601569 | es_ES |
dc.description.references | Moliner, M., Martínez, C., & Corma, A. (2013). Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 26(1), 246-258. doi:10.1021/cm4015095 | es_ES |
dc.description.references | Zhang, H., Yang, C., Zhu, L., Meng, X., Yilmaz, B., Müller, U., … Xiao, F.-S. (2012). Organotemplate-free and seed-directed synthesis of levyne zeolite. Microporous and Mesoporous Materials, 155, 1-7. doi:10.1016/j.micromeso.2011.12.051 | es_ES |
dc.description.references | Imai, H., Hayashida, N., Yokoi, T., & Tatsumi, T. (2014). Direct crystallization of CHA-type zeolite from amorphous aluminosilicate gel by seed-assisted method in the absence of organic-structure-directing agents. Microporous and Mesoporous Materials, 196, 341-348. doi:10.1016/j.micromeso.2014.05.043 | es_ES |
dc.description.references | DWYER, F., & CHU, P. (1979). ZSM-4 crystallization via faujasite metamorphosis. Journal of Catalysis, 59(2), 263-271. doi:10.1016/s0021-9517(79)80030-5 | es_ES |
dc.description.references | PERROTTA, A. (1978). The synthesis, characterization, and catalytic activity of omega and ZSM-4 zeolites. Journal of Catalysis, 55(2), 240-249. doi:10.1016/0021-9517(78)90210-5 | es_ES |
dc.description.references | S. I.Zones US 4544538 1985. | es_ES |
dc.description.references | Zones, S. I., & Van Nordstrand, R. A. (1988). Novel zeolite transformations: The template-mediated conversion of Cubic P zeolite to SSZ-13. Zeolites, 8(3), 166-174. doi:10.1016/s0144-2449(88)80302-6 | es_ES |
dc.description.references | Itakura, M., Inoue, T., Takahashi, A., Fujitani, T., Oumi, Y., & Sano, T. (2008). Synthesis of High-silica CHA Zeolite from FAU Zeolite in the Presence of Benzyltrimethylammonium Hydroxide. Chemistry Letters, 37(9), 908-909. doi:10.1246/cl.2008.908 | es_ES |
dc.description.references | Yamanaka, N., Itakura, M., Kiyozumi, Y., Ide, Y., Sadakane, M., & Sano, T. (2012). Acid stability evaluation of CHA-type zeolites synthesized by interzeolite conversion of FAU-type zeolite and their membrane application for dehydration of acetic acid aqueous solution. Microporous and Mesoporous Materials, 158, 141-147. doi:10.1016/j.micromeso.2012.03.030 | es_ES |
dc.description.references | Yamanaka, N., Itakura, M., Kiyozumi, Y., Sadakane, M., & Sano, T. (2013). Effect of Structure-Directing Agents on FAU–CHA Interzeolite Conversion and Preparation of High Pervaporation Performance CHA Zeolite Membranes for the Dehydration of Acetic Acid Solution. Bulletin of the Chemical Society of Japan, 86(11), 1333-1340. doi:10.1246/bcsj.20130189 | es_ES |
dc.description.references | Takata, T., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2016). Nanosized CHA zeolites with high thermal and hydrothermal stability derived from the hydrothermal conversion of FAU zeolite. Microporous and Mesoporous Materials, 225, 524-533. doi:10.1016/j.micromeso.2016.01.045 | es_ES |
dc.description.references | Martín, N., Vennestrøm, P. N. R., Thøgersen, J. R., Moliner, M., & Corma, A. (2017). Fe-Containing Zeolites for NH3 -SCR of NO x : Effect of Structure, Synthesis Procedure, and Chemical Composition on Catalytic Performance and Stability. Chemistry - A European Journal, 23(54), 13404-13414. doi:10.1002/chem.201701742 | es_ES |
dc.description.references | Xiong, X., Yuan, D., Wu, Q., Chen, F., Meng, X., Lv, R., … Xiao, F.-S. (2017). Efficient and rapid transformation of high silica CHA zeolite from FAU zeolite in the absence of water. Journal of Materials Chemistry A, 5(19), 9076-9080. doi:10.1039/c7ta01749a | es_ES |
dc.description.references | Takata, T., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2017). Incorporation of various heterometal atoms in CHA zeolites by hydrothermal conversion of FAU zeolite and their performance for selective catalytic reduction of NO x with ammonia. Microporous and Mesoporous Materials, 246, 89-101. doi:10.1016/j.micromeso.2017.03.018 | es_ES |
dc.description.references | Kunitake, Y., Takata, T., Yamasaki, Y., Yamanaka, N., Tsunoji, N., Takamitsu, Y., … Sano, T. (2015). Synthesis of titanated chabazite with enhanced thermal stability by hydrothermal conversion of titanated faujasite. Microporous and Mesoporous Materials, 215, 58-66. doi:10.1016/j.micromeso.2015.05.023 | es_ES |
dc.description.references | Sasaki, H., Jon, H., Itakura, M., Inoue, T., Ikeda, T., Oumi, Y., & Sano, T. (2008). Hydrothermal conversion of FAU zeolite into aluminous MTN zeolite. Journal of Porous Materials, 16(4), 465-471. doi:10.1007/s10934-008-9220-0 | es_ES |
dc.description.references | Shibata, S., Itakura, M., Ide, Y., Sadakane, M., & Sano, T. (2011). FAU–LEV interzeolite conversion in fluoride media. Microporous and Mesoporous Materials, 138(1-3), 32-39. doi:10.1016/j.micromeso.2010.09.034 | es_ES |
dc.description.references | T. M.Davis US9156706 2015. | es_ES |
dc.description.references | Moliner, M., Franch, C., Palomares, E., Grill, M., & Corma, A. (2012). Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chemical Communications, 48(66), 8264. doi:10.1039/c2cc33992g | es_ES |
dc.description.references | Dusselier, M., Deimund, M. A., Schmidt, J. E., & Davis, M. E. (2015). Methanol-to-Olefins Catalysis with Hydrothermally Treated Zeolite SSZ-39. ACS Catalysis, 5(10), 6078-6085. doi:10.1021/acscatal.5b01577 | es_ES |
dc.description.references | S. I.Zones Y.Nakagawa S. T.Evans G. S.Lee US 5958370 1999; | es_ES |
dc.description.references | Wagner, P., Nakagawa, Y., Lee, G. S., Davis, M. E., Elomari, S., Medrud, R. C., & Zones, S. I. (2000). Guest/Host Relationships in the Synthesis of the Novel Cage-Based Zeolites SSZ-35, SSZ-36, and SSZ-39. Journal of the American Chemical Society, 122(2), 263-273. doi:10.1021/ja990722u | es_ES |
dc.description.references | Nakazawa, N., Inagaki, S., & Kubota, Y. (2016). Direct Hydrothermal Synthesis of High-silica SSZ-39 Zeolite with Small Particle Size. Chemistry Letters, 45(8), 919-921. doi:10.1246/cl.160370 | es_ES |
dc.description.references | Bhadra, B. N., Seo, P. W., Jun, J. W., Jeong, J. H., Kim, T.-W., Kim, C.-U., & Jhung, S. H. (2016). Syntheses of SSZ-39 and mordenite zeolites with N,N-dialkyl-2,6-dimethyl-piperidinium hydroxide/iodides: Phase-selective syntheses with anions. Microporous and Mesoporous Materials, 235, 135-142. doi:10.1016/j.micromeso.2016.08.003 | es_ES |
dc.description.references | Martín, N., Vennestrøm, P. N. R., Thøgersen, J. R., Moliner, M., & Corma, A. (2017). Iron-Containing SSZ-39 (AEI) Zeolite: An Active and Stable High-Temperature NH3 -SCR Catalyst. ChemCatChem, 9(10), 1754-1757. doi:10.1002/cctc.201601627 | es_ES |
dc.description.references | Martín, N., Li, Z., Martínez-Triguero, J., Yu, J., Moliner, M., & Corma, A. (2016). Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process. Chemical Communications, 52(36), 6072-6075. doi:10.1039/c5cc09719c | es_ES |
dc.description.references | Martín, N., Paris, C., Vennestrøm, P. N. R., Thøgersen, J. R., Moliner, M., & Corma, A. (2017). Cage-based small-pore catalysts for NH3-SCR prepared by combining bulky organic structure directing agents with modified zeolites as reagents. Applied Catalysis B: Environmental, 217, 125-136. doi:10.1016/j.apcatb.2017.05.082 | es_ES |
dc.description.references | Itakura, M., Oumi, Y., Sadakane, M., & Sano, T. (2010). Synthesis of high-silica offretite by the interzeolite conversion method. Materials Research Bulletin, 45(5), 646-650. doi:10.1016/j.materresbull.2010.01.007 | es_ES |
dc.description.references | Kubota, Y., Inagaki, S., Nishita, Y., Itabashi, K., Tsuboi, Y., Syahylah, T., & Okubo, T. (2015). Remarkable enhancement of catalytic activity and selectivity of MSE-type zeolite by post-synthetic modification. Catalysis Today, 243, 85-91. doi:10.1016/j.cattod.2014.06.039 | es_ES |
dc.description.references | Shi, Y., Xing, E., Gao, X., Liu, D., Xie, W., Zhang, F., … Shu, X. (2014). Topology reconstruction from FAU to MWW structure. Microporous and Mesoporous Materials, 200, 269-278. doi:10.1016/j.micromeso.2014.08.045 | es_ES |
dc.description.references | Schmidt, J. E., Chen, C.-Y., Brand, S. K., Zones, S. I., & Davis, M. E. (2016). Facile Synthesis, Characterization, and Catalytic Behavior of a Large-Pore Zeolite with the IWV Framework. Chemistry - A European Journal, 22(12), 4022-4029. doi:10.1002/chem.201504717 | es_ES |
dc.description.references | Girnus, I., Hoffmann, K., Marlow, F., Caro, J., & Döring, G. (1994). Large CoAPO-5 single crystals: Microwave synthesis and anisotropic optical absorption. Microporous Materials, 2(6), 537-541. doi:10.1016/0927-6513(93)e0066-p | es_ES |
dc.description.references | Maekawa, H., Kubota, Y., & Sugi, Y. (2004). Hydrothermal Synthesis of [Al]-SSZ-24 from [Al]-Beta Zeolite ([Al]-BEA) as Precursors. Chemistry Letters, 33(9), 1126-1127. doi:10.1246/cl.2004.1126 | es_ES |
dc.description.references | Ahedi, R. K., Kubota, Y., & Sugi, Y. (2001). Journal of Materials Chemistry, 11(12), 2922-2924. doi:10.1039/b105438b | es_ES |
dc.description.references | Kubota, Y., Maekawa, H., Miyata, S., Tatsumi, T., & Sugi, Y. (2007). Hydrothermal synthesis of metallosilicate SSZ-24 from metallosilicate beta as precursors. Microporous and Mesoporous Materials, 101(1-2), 115-126. doi:10.1016/j.micromeso.2006.11.037 | es_ES |
dc.description.references | Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0 | es_ES |
dc.description.references | Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., … Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834-10843. doi:10.1021/ja00053a020 | es_ES |
dc.description.references | Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n | es_ES |
dc.description.references | Tao, Y., Kanoh, H., Abrams, L., & Kaneko, K. (2006). Mesopore-Modified Zeolites: Preparation, Characterization, and Applications. Chemical Reviews, 106(3), 896-910. doi:10.1021/cr040204o | es_ES |
dc.description.references | Prasomsri, T., Jiao, W., Weng, S. Z., & Garcia Martinez, J. (2015). Mesostructured zeolites: bridging the gap between zeolites and MCM-41. Chemical Communications, 51(43), 8900-8911. doi:10.1039/c4cc10391b | es_ES |
dc.description.references | Chal, R., Cacciaguerra, T., van Donk, S., & Gérardin, C. (2010). Pseudomorphic synthesis of mesoporous zeolite Y crystals. Chemical Communications, 46(41), 7840. doi:10.1039/c0cc02073g | es_ES |
dc.description.references | García-Martínez, J., Johnson, M., Valla, J., Li, K., & Ying, J. Y. (2012). Mesostructured zeolite Y—high hydrothermal stability and superior FCC catalytic performance. Catalysis Science & Technology, 2(5), 987. doi:10.1039/c2cy00309k | es_ES |
dc.description.references | Liu, S., Cao, X., Li, L., Li, C., Ji, Y., & Xiao, F.-S. (2008). Preformed zeolite precursor route for synthesis of mesoporous X zeolite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 318(1-3), 269-274. doi:10.1016/j.colsurfa.2008.01.002 | es_ES |
dc.description.references | Díaz, U., & Corma, A. (2014). Layered zeolitic materials: an approach to designing versatile functional solids. Dalton Transactions, 43(27), 10292. doi:10.1039/c3dt53181c | es_ES |
dc.description.references | Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910 | es_ES |
dc.description.references | Lawton, S. L., Fung, A. S., Kennedy, G. J., Alemany, L. B., Chang, C. D., Hatzikos, G. H., … Woessner, D. E. (1996). Zeolite MCM-49: A Three-Dimensional MCM-22 Analogue Synthesized byin SituCrystallization. The Journal of Physical Chemistry, 100(9), 3788-3798. doi:10.1021/jp952871e | es_ES |
dc.description.references | Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z | es_ES |
dc.description.references | Corma, A., Diaz, U., Fornés, V., Guil, J. M., Martínez-Triguero, J., & Creyghton, E. J. (2000). Characterization and Catalytic Activity of MCM-22 and MCM-56 Compared with ITQ-2. Journal of Catalysis, 191(1), 218-224. doi:10.1006/jcat.1999.2774 | es_ES |
dc.description.references | Camblor, M. A., Corma, A., Díaz-Cabañas, M.-J., & Baerlocher, C. (1998). Synthesis and Structural Characterization of MWW Type Zeolite ITQ-1, the Pure Silica Analog of MCM-22 and SSZ-25. The Journal of Physical Chemistry B, 102(1), 44-51. doi:10.1021/jp972319k | es_ES |
dc.description.references | Xu, L., Ji, X., Jiang, J.-G., Han, L., Che, S., & Wu, P. (2015). Intergrown Zeolite MWW Polymorphs Prepared by the Rapid Dissolution–Recrystallization Route. Chemistry of Materials, 27(23), 7852-7860. doi:10.1021/acs.chemmater.5b03658 | es_ES |
dc.description.references | Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). New Aluminosilicate and Titanosilicate Delaminated Materials Active for Acid Catalysis, and Oxidation Reactions Using H2O2. Journal of the American Chemical Society, 122(12), 2804-2809. doi:10.1021/ja9938130 | es_ES |
dc.description.references | Osman, M., Al-Khattaf, S., Díaz, U., Martínez, C., & Corma, A. (2016). Influencing the activity and selectivity of alkylaromatic catalytic transformations by varying the degree of delamination in MWW zeolites. Catalysis Science & Technology, 6(9), 3166-3181. doi:10.1039/c5cy01675d | es_ES |
dc.description.references | RODRIGUEZ, I., CLIMENT, M., IBORRA, S., FORNES, V., & CORMA, A. (2000). Use of delaminated zeolites (ITQ-2) and mesoporous molecular sieves in the production of fine chemicals: Preparation of dimethylacetals and tetrahydropyranylation of alcohols and phenols. Journal of Catalysis, 192(2), 441-447. doi:10.1006/jcat.2000.2861 | es_ES |
dc.description.references | Corma, A., Fornés, V., Guil, J. ., Pergher, S., Maesen, T. L. ., & Buglass, J. . (2000). Preparation, characterisation and catalytic activity of ITQ-2, a delaminated zeolite. Microporous and Mesoporous Materials, 38(2-3), 301-309. doi:10.1016/s1387-1811(00)00149-9 | es_ES |
dc.description.references | Corma, A., Díaz, U., Fornés, V., Jordá, J. L., Domine, M., & Rey, F. (1999). Ti/ITQ-2, a new material highly active and selective for the epoxidation of olefins with organic hydroperoxides. Chemical Communications, (9), 779-780. doi:10.1039/a900763f | es_ES |
dc.description.references | Liu, L., Díaz, U., Arenal, R., Agostini, G., Concepción, P., & Corma, A. (2016). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials, 16(1), 132-138. doi:10.1038/nmat4757 | es_ES |
dc.description.references | Gies, H., & Gunawardane, R. P. (1987). One-step synthesis, properties and crystal structure of aluminium-free ferrierite. Zeolites, 7(5), 442-445. doi:10.1016/0144-2449(87)90012-1 | es_ES |
dc.description.references | Schreyeck, L., Caullet, P., Mougenel, J. C., Guth, J. L., & Marler, B. (1996). PREFER: a new layered (alumino) silicate precursor of FER-type zeolite. Microporous Materials, 6(5-6), 259-271. doi:10.1016/0927-6513(96)00032-6 | es_ES |
dc.description.references | Ikeda, T., Kayamori, S., & Mizukami, F. (2009). Synthesis and crystal structure of layered silicate PLS-3 and PLS-4 as a topotactic zeolite precursor. Journal of Materials Chemistry, 19(31), 5518. doi:10.1039/b905415d | es_ES |
dc.description.references | Yang, B., Jiang, J., Xu, H., Liu, Y., Peng, H., & Wu, P. (2013). Selective skeletal isomerization of 1-butene over FER-type zeolites derived from PLS-3 lamellar precursors. Applied Catalysis A: General, 455, 107-113. doi:10.1016/j.apcata.2013.01.024 | es_ES |
dc.description.references | Burton, A., Accardi, R. J., Lobo, R. F., Falcioni, M., & Deem, M. W. (2000). MCM-47: A Highly Crystalline Silicate Composed of Hydrogen-Bonded Ferrierite Layers. Chemistry of Materials, 12(10), 2936-2942. doi:10.1021/cm000243q | es_ES |
dc.description.references | A.Corma U.Díaz V.Fornés WO2002060815 2002. | es_ES |
dc.description.references | Chica, A., Diaz, U., Fornés, V., & Corma, A. (2009). Changing the hydroisomerization to hydrocracking ratio of long chain alkanes by varying the level of delamination in zeolitic (ITQ-6) materials. Catalysis Today, 147(3-4), 179-185. doi:10.1016/j.cattod.2008.10.046 | es_ES |
dc.description.references | Marler, B., Wang, Y., Song, J., & Gies, H. (2014). Topotactic condensation of layer silicates with ferrierite-type layers forming porous tectosilicates. Dalton Trans., 43(27), 10396-10416. doi:10.1039/c4dt00262h | es_ES |
dc.description.references | Dorset, D. L., & Kennedy, G. J. (2004). Crystal Structure of MCM-65: An Alternative Linkage of Ferrierite Layers. The Journal of Physical Chemistry B, 108(39), 15216-15222. doi:10.1021/jp040305q | es_ES |
dc.description.references | Ikeda, T., Akiyama, Y., Oumi, Y., Kawai, A., & Mizukami, F. (2004). The Topotactic Conversion of a Novel Layered Silicate into a New Framework Zeolite. Angewandte Chemie International Edition, 43(37), 4892-4896. doi:10.1002/anie.200460168 | es_ES |
dc.description.references | Ikeda, T., Akiyama, Y., Oumi, Y., Kawai, A., & Mizukami, F. (2004). The Topotactic Conversion of a Novel Layered Silicate into a New Framework Zeolite. Angewandte Chemie, 116(37), 5000-5004. doi:10.1002/ange.200460168 | es_ES |
dc.description.references | Tsunoji, N., Ikeda, T., Ide, Y., Sadakane, M., & Sano, T. (2012). Synthesis and characteristics of novel layered silicates HUS-2 and HUS-3 derived from a SiO2–choline hydroxide–NaOH–H2O system. Journal of Materials Chemistry, 22(27), 13682. doi:10.1039/c2jm31872e | es_ES |
dc.description.references | Wu, P., Ruan, J., Wang, L., Wu, L., Wang, Y., Liu, Y., … Tatsumi, T. (2008). Methodology for Synthesizing Crystalline Metallosilicates with Expanded Pore Windows Through Molecular Alkoxysilylation of Zeolitic Lamellar Precursors. Journal of the American Chemical Society, 130(26), 8178-8187. doi:10.1021/ja0758739 | es_ES |
dc.description.references | Martínez-Franco, R., Paris, C., Martínez-Triguero, J., Moliner, M., & Corma, A. (2017). Direct synthesis of the aluminosilicate form of the small pore CDO zeolite with novel OSDAs and the expanded polymorphs. Microporous and Mesoporous Materials, 246, 147-157. doi:10.1016/j.micromeso.2017.03.014 | es_ES |
dc.description.references | T. V.Whittam US Pat 4397825 1983. | es_ES |
dc.description.references | Zanardi, S., Alberti, A., Cruciani, G., Corma, A., Fornés, V., & Brunelli, M. (2004). Crystal Structure Determination of Zeolite Nu-6(2) and Its Layered Precursor Nu-6(1). Angewandte Chemie International Edition, 43(37), 4933-4937. doi:10.1002/anie.200460085 | es_ES |
dc.description.references | Zanardi, S., Alberti, A., Cruciani, G., Corma, A., Fornés, V., & Brunelli, M. (2004). Crystal Structure Determination of Zeolite Nu-6(2) and Its Layered Precursor Nu-6(1). Angewandte Chemie, 116(37), 5041-5045. doi:10.1002/ange.200460085 | es_ES |
dc.description.references | Andrews, S. J., Papiz, M. Z., McMeeking, R., Blake, A. J., Lowe, B. M., Franklin, K. R., … Harding, M. M. (1988). Piperazine silicate (EU 19): the structure of a very small crystal determined with synchrotron radiation. Acta Crystallographica Section B Structural Science, 44(1), 73-77. doi:10.1107/s0108768187009820 | es_ES |
dc.description.references | Marler, B., Camblor, M. A., & Gies, H. (2006). The disordered structure of silica zeolite EU-20b, obtained by topotactic condensation of the piperazinium containing layer silicate EU-19. Microporous and Mesoporous Materials, 90(1-3), 87-101. doi:10.1016/j.micromeso.2005.10.047 | es_ES |
dc.description.references | Sun, J., Bonneau, C., Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Moliner, M., … Zou, X. (2009). The ITQ-37 mesoporous chiral zeolite. Nature, 458(7242), 1154-1157. doi:10.1038/nature07957 | es_ES |
dc.description.references | Paillaud, J.-L. (2004). Extra-Large-Pore Zeolites with Two-Dimensional Channels Formed by 14 and 12 Rings. Science, 304(5673), 990-992. doi:10.1126/science.1098242 | es_ES |
dc.description.references | Roth, W. J., Shvets, O. V., Shamzhy, M., Chlubná, P., Kubů, M., Nachtigall, P., & Čejka, J. (2011). Postsynthesis Transformation of Three-Dimensional Framework into a Lamellar Zeolite with Modifiable Architecture. Journal of the American Chemical Society, 133(16), 6130-6133. doi:10.1021/ja200741r | es_ES |
dc.description.references | Kasian, N., Tuel, A., Verheyen, E., Kirschhock, C. E. A., Taulelle, F., & Martens, J. A. (2014). NMR Evidence for Specific Germanium Siting in IM-12 Zeolite. Chemistry of Materials, 26(19), 5556-5565. doi:10.1021/cm502525w | es_ES |
dc.description.references | Corma, A., Rey, F., Valencia, S., Jordá, J. L., & Rius, J. (2003). A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity. Nature Materials, 2(7), 493-497. doi:10.1038/nmat921 | es_ES |
dc.description.references | Castañeda, R., Corma, A., Fornés, V., Rey, F., & Rius, J. (2003). Synthesis of a New Zeolite Structure ITQ-24, with Intersecting 10- and 12-Membered Ring Pores. Journal of the American Chemical Society, 125(26), 7820-7821. doi:10.1021/ja035534p | es_ES |
dc.description.references | Corma, A., Puche, M., Rey, F., Sankar, G., & Teat, S. J. (2003). A Zeolite Structure (ITQ-13) with Three Sets of Medium-Pore Crossing Channels Formed by9- and 10-Rings. Angewandte Chemie International Edition, 42(10), 1156-1159. doi:10.1002/anie.200390304 | es_ES |
dc.description.references | Corma, A., Puche, M., Rey, F., Sankar, G., & Teat, S. J. (2003). Angewandte Chemie, 115(10), 1188-1191. doi:10.1002/ange.200390275 | es_ES |
dc.description.references | Mazur, M., Chlubná-Eliášová, P., Roth, W. J., & Čejka, J. (2014). Intercalation chemistry of layered zeolite precursor IPC-1P. Catalysis Today, 227, 37-44. doi:10.1016/j.cattod.2013.10.051 | es_ES |
dc.description.references | Chlubná-Eliášová, P., Tian, Y., Pinar, A. B., Kubů, M., Čejka, J., & Morris, R. E. (2014). The Assembly-Disassembly-Organization-Reassembly Mechanism for 3D-2D-3D Transformation of Germanosilicate IWW Zeolite. Angewandte Chemie International Edition, 53(27), 7048-7052. doi:10.1002/anie.201400600 | es_ES |
dc.description.references | Chlubná-Eliášová, P., Tian, Y., Pinar, A. B., Kubů, M., Čejka, J., & Morris, R. E. (2014). The Assembly-Disassembly-Organization-Reassembly Mechanism for 3D-2D-3D Transformation of Germanosilicate IWW Zeolite. Angewandte Chemie, 126(27), 7168-7172. doi:10.1002/ange.201400600 | es_ES |
dc.description.references | Kasneryk, V., Shamzhy, M., Opanasenko, M., Wheatley, P. S., Morris, S. A., Russell, S. E., … Morris, R. E. (2017). Expansion of the ADOR Strategy for the Synthesis of Zeolites: The Synthesis of IPC-12 from Zeolite UOV. Angewandte Chemie International Edition, 56(15), 4324-4327. doi:10.1002/anie.201700590 | es_ES |
dc.description.references | Kasneryk, V., Shamzhy, M., Opanasenko, M., Wheatley, P. S., Morris, S. A., Russell, S. E., … Morris, R. E. (2017). Expansion of the ADOR Strategy for the Synthesis of Zeolites: The Synthesis of IPC-12 from Zeolite UOV. Angewandte Chemie, 129(15), 4388-4391. doi:10.1002/ange.201700590 | es_ES |
dc.description.references | Firth, D. S., Morris, S. A., Wheatley, P. S., Russell, S. E., Slawin, A. M. Z., Dawson, D. M., … Morris, R. E. (2017). Assembly–Disassembly–Organization–Reassembly Synthesis of Zeolites Based on cfi-Type Layers. Chemistry of Materials, 29(13), 5605-5611. doi:10.1021/acs.chemmater.7b01181 | es_ES |
dc.description.references | Zones, S. I. (2011). Translating new materials discoveries in zeolite research to commercial manufacture. Microporous and Mesoporous Materials, 144(1-3), 1-8. doi:10.1016/j.micromeso.2011.03.039 | es_ES |
dc.description.references | Gates, B. C., Flytzani-Stephanopoulos, M., Dixon, D. A., & Katz, A. (2017). Atomically dispersed supported metal catalysts: perspectives and suggestions for future research. Catalysis Science & Technology, 7(19), 4259-4275. doi:10.1039/c7cy00881c | es_ES |
dc.description.references | Tomkins, P., Ranocchiari, M., & van Bokhoven, J. A. (2017). Direct Conversion of Methane to Methanol under Mild Conditions over Cu-Zeolites and beyond. Accounts of Chemical Research, 50(2), 418-425. doi:10.1021/acs.accounts.6b00534 | es_ES |
dc.description.references | Beale, A. M., Gao, F., Lezcano-Gonzalez, I., Peden, C. H. F., & Szanyi, J. (2015). Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chemical Society Reviews, 44(20), 7371-7405. doi:10.1039/c5cs00108k | es_ES |
dc.description.references | Moliner, M., & Corma, A. (2018). General Aspects on Structure and Reactivity of Framework and Extra-framework Metals in Zeolite Materials. Structure and Reactivity of Metals in Zeolite Materials, 53-90. doi:10.1007/430_2017_21 | es_ES |
dc.description.references | A. W.Burton WO2014/099261 2014; | es_ES |
dc.description.references | Martínez-Franco, R., Paris, C., Martínez-Armero, M. E., Martínez, C., Moliner, M., & Corma, A. (2016). High-silica nanocrystalline Beta zeolites: efficient synthesis and catalytic application. Chemical Science, 7(1), 102-108. doi:10.1039/c5sc03019f | es_ES |
dc.description.references | Gallego, E. M., Paris, C., Díaz-Rey, M. R., Martínez-Armero, M. E., Martínez-Triguero, J., Martínez, C., … Corma, A. (2017). Simple organic structure directing agents for synthesizing nanocrystalline zeolites. Chemical Science, 8(12), 8138-8149. doi:10.1039/c7sc02858j | es_ES |
dc.description.references | Bereciartua, P. J., Cantín, Á., Corma, A., Jordá, J. L., Palomino, M., Rey, F., … Casty, G. L. (2017). Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science, 358(6366), 1068-1071. doi:10.1126/science.aao0092 | es_ES |