Mostrar el registro sencillo del ítem
dc.contributor.author | Folch-Fortuny, Abel | es_ES |
dc.contributor.author | Arteaga, Francisco | es_ES |
dc.contributor.author | Ferrer, Alberto | es_ES |
dc.date.accessioned | 2020-10-29T04:32:18Z | |
dc.date.available | 2020-10-29T04:32:18Z | |
dc.date.issued | 2017-07 | es_ES |
dc.identifier.issn | 0886-9383 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/153468 | |
dc.description.abstract | [EN] New algorithms to deal with missing values in predictive modelling are presented in this article. Specifically, 2 trimmed scores regression adaptations are proposed, one from principal component analysis model building with missing data (MD) and other from partial least squares regression model exploitation with missing values. Using these methods, practitioners can impute MD both in the explanatory/predictor and the dependent/response variables. Partial least squares is used here to build the multivariate calibration models; however, any regression method can be used after MD imputation. Four case studies, with different latent structures, are analysed here to compare the trimmed scores regression¿based methods against state-of-the-art approaches. The MATLAB code for these methods is also provided for its direct implementation at http://mseg.webs.upv.es, under a GNU license. | es_ES |
dc.description.sponsorship | Spanish Ministry of Science and Innovation; FEDER; European Union, Grant/Award Number: DPI2011-28112-C04-02 and DPI2014-55276-C5-1R; Spanish Ministry of Economy and Competitiveness, Grant/Award Number: ECO2013-43353-R | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Journal of Chemometrics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Imputation | es_ES |
dc.subject | Missing data | es_ES |
dc.subject | Multivariate calibration | es_ES |
dc.subject | Partial least squares regression (PLS) | es_ES |
dc.subject | Trimmed scores regression (TSR) | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | PLS model building with missing data: New algorithms and a comparative study | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/cem.2897 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ECO2013-43353-R/ES/CREAR CAPITAL DE MARCA E INNOVAR A TRAVES DE LA RELACION: OPORTUNIDADES PARA LA EMPRESA TURISTICA MEDIANTE LOS AVANCES EN LAS TIC/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-02/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES. (MULTISCALES)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2014-55276-C5-1-R/ES/BIOLOGIA SINTETICA PARA LA MEJORA EN BIOPRODUCCION: DISEÑO, OPTIMIZACION, MONITORIZACION Y CONTROL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Folch-Fortuny, A.; Arteaga, F.; Ferrer, A. (2017). PLS model building with missing data: New algorithms and a comparative study. Journal of Chemometrics. 31(7):1-12. https://doi.org/10.1002/cem.2897 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/cem.2897 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 31 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.pasarela | S\349804 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Grung, B., & Manne, R. (1998). Missing values in principal component analysis. Chemometrics and Intelligent Laboratory Systems, 42(1-2), 125-139. doi:10.1016/s0169-7439(98)00031-8 | es_ES |
dc.description.references | Arteaga, F., & Ferrer-Riquelme, A. J. (2009). Missing Data. Comprehensive Chemometrics, 285-314. doi:10.1016/b978-044452701-1.00125-3 | es_ES |
dc.description.references | Folch-Fortuny, A., Arteaga, F., & Ferrer, A. (2015). PCA model building with missing data: New proposals and a comparative study. Chemometrics and Intelligent Laboratory Systems, 146, 77-88. doi:10.1016/j.chemolab.2015.05.006 | es_ES |
dc.description.references | Arteaga, F., & Ferrer, A. (2002). Dealing with missing data in MSPC: several methods, different interpretations, some examples. Journal of Chemometrics, 16(8-10), 408-418. doi:10.1002/cem.750 | es_ES |
dc.description.references | Arteaga, F., & Ferrer, A. (2005). Framework for regression-based missing data imputation methods in on-line MSPC. Journal of Chemometrics, 19(8), 439-447. doi:10.1002/cem.946 | es_ES |
dc.description.references | Nelson, P. R. C., Taylor, P. A., & MacGregor, J. F. (1996). Missing data methods in PCA and PLS: Score calculations with incomplete observations. Chemometrics and Intelligent Laboratory Systems, 35(1), 45-65. doi:10.1016/s0169-7439(96)00007-x | es_ES |
dc.description.references | Walczak, B., & Massart, D. L. (2001). Dealing with missing data. Chemometrics and Intelligent Laboratory Systems, 58(1), 15-27. doi:10.1016/s0169-7439(01)00131-9 | es_ES |
dc.description.references | Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data. doi:10.1201/9781439821862 | es_ES |
dc.description.references | Folch-Fortuny, A., Arteaga, F., & Ferrer, A. (2016). Missing Data Imputation Toolbox for MATLAB. Chemometrics and Intelligent Laboratory Systems, 154, 93-100. doi:10.1016/j.chemolab.2016.03.019 | es_ES |
dc.description.references | ProSensus Multivariate release 16.02 2016 | es_ES |
dc.description.references | SIMCA release 14 2015 | es_ES |
dc.description.references | The Unscrambler X Release 10.4 2016 | es_ES |
dc.description.references | PLS_Toolbox Release 8.1 2016 | es_ES |
dc.description.references | Liu, Y., & Brown, S. D. (2013). Comparison of five iterative imputation methods for multivariate classification. Chemometrics and Intelligent Laboratory Systems, 120, 106-115. doi:10.1016/j.chemolab.2012.11.010 | es_ES |
dc.description.references | White, I. R., Royston, P., & Wood, A. M. (2010). Multiple imputation using chained equations: Issues and guidance for practice. Statistics in Medicine, 30(4), 377-399. doi:10.1002/sim.4067 | es_ES |
dc.description.references | Schneider, T. (2001). Analysis of Incomplete Climate Data: Estimation of Mean Values and Covariance Matrices and Imputation of Missing Values. Journal of Climate, 14(5), 853-871. doi:10.1175/1520-0442(2001)014<0853:aoicde>2.0.co;2 | es_ES |
dc.description.references | Fierro, R. D., Golub, G. H., Hansen, P. C., & O’Leary, D. P. (1997). Regularization by Truncated Total Least Squares. SIAM Journal on Scientific Computing, 18(4), 1223-1241. doi:10.1137/s1064827594263837 | es_ES |
dc.description.references | Puwakkatiya-Kankanamage, E. H., García-Muñoz, S., & Biegler, L. T. (2014). An optimization-based undeflated PLS (OUPLS) method to handle missing data in the training set. Journal of Chemometrics, 28(7), 575-584. doi:10.1002/cem.2618 | es_ES |
dc.description.references | Camacho, J., Picó, J., & Ferrer, A. (2008). Bilinear modelling of batch processes. Part II: a comparison of PLS soft-sensors. Journal of Chemometrics, 22(10), 533-547. doi:10.1002/cem.1179 | es_ES |
dc.description.references | Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1-17. doi:10.1016/0003-2670(86)80028-9 | es_ES |
dc.description.references | Kubinyi, H. (1996). Evolutionary variable selection in regression and PLS analyses. Journal of Chemometrics, 10(2), 119-133. doi:10.1002/(sici)1099-128x(199603)10:2<119::aid-cem409>3.0.co;2-4 | es_ES |
dc.description.references | González-Martínez, J. M., Folch-Fortuny, A., Llaneras, F., Tortajada, M., Picó, J., & Ferrer, A. (2014). Metabolic flux understanding of Pichia pastoris grown on heterogenous culture media. Chemometrics and Intelligent Laboratory Systems, 134, 89-99. doi:10.1016/j.chemolab.2014.02.003 | es_ES |
dc.description.references | Folch-Fortuny, A., Vitale, R., de Noord, O. E., & Ferrer, A. (2017). Calibration transfer between NIR spectrometers: New proposals and a comparative study. Journal of Chemometrics, 31(3), e2874. doi:10.1002/cem.2874 | es_ES |
dc.description.references | Arteaga, F., & Ferrer, A. (2010). How to simulate normal data sets with the desired correlation structure. Chemometrics and Intelligent Laboratory Systems, 101(1), 38-42. doi:10.1016/j.chemolab.2009.12.003 | es_ES |
dc.description.references | Arteaga, F., & Ferrer, A. (2013). Building covariance matrices with the desired structure. Chemometrics and Intelligent Laboratory Systems, 127, 80-88. doi:10.1016/j.chemolab.2013.06.003 | es_ES |
dc.description.references | Folch-Fortuny, A., Arteaga, F., & Ferrer, A. (2016). Assessment of maximum likelihood PCA missing data imputation. Journal of Chemometrics, 30(7), 386-393. doi:10.1002/cem.2804 | es_ES |
dc.description.references | Saccenti, E., & Camacho, J. (2015). On the use of the observation-wisek-fold operation in PCA cross-validation. Journal of Chemometrics, 29(8), 467-478. doi:10.1002/cem.2726 | es_ES |