- -

PLS model building with missing data: New algorithms and a comparative study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

PLS model building with missing data: New algorithms and a comparative study

Mostrar el registro completo del ítem

Folch-Fortuny, A.; Arteaga, F.; Ferrer, A. (2017). PLS model building with missing data: New algorithms and a comparative study. Journal of Chemometrics. 31(7):1-12. https://doi.org/10.1002/cem.2897

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/153468

Ficheros en el ítem

Metadatos del ítem

Título: PLS model building with missing data: New algorithms and a comparative study
Autor: Folch-Fortuny, Abel Arteaga, Francisco Ferrer, Alberto
Entidad UPV: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Fecha difusión:
Resumen:
[EN] New algorithms to deal with missing values in predictive modelling are presented in this article. Specifically, 2 trimmed scores regression adaptations are proposed, one from principal component analysis model building ...[+]
Palabras clave: Imputation , Missing data , Multivariate calibration , Partial least squares regression (PLS) , Trimmed scores regression (TSR)
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Chemometrics. (issn: 0886-9383 )
DOI: 10.1002/cem.2897
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/cem.2897
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//ECO2013-43353-R/ES/CREAR CAPITAL DE MARCA E INNOVAR A TRAVES DE LA RELACION: OPORTUNIDADES PARA LA EMPRESA TURISTICA MEDIANTE LOS AVANCES EN LAS TIC/
info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-02/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES. (MULTISCALES)/
info:eu-repo/grantAgreement/MINECO//DPI2014-55276-C5-1-R/ES/BIOLOGIA SINTETICA PARA LA MEJORA EN BIOPRODUCCION: DISEÑO, OPTIMIZACION, MONITORIZACION Y CONTROL/
Agradecimientos:
Spanish Ministry of Science and Innovation; FEDER; European Union, Grant/Award Number: DPI2011-28112-C04-02 and DPI2014-55276-C5-1R; Spanish Ministry of Economy and Competitiveness, Grant/Award Number: ECO2013-43353-R
Tipo: Artículo

References

Grung, B., & Manne, R. (1998). Missing values in principal component analysis. Chemometrics and Intelligent Laboratory Systems, 42(1-2), 125-139. doi:10.1016/s0169-7439(98)00031-8

Arteaga, F., & Ferrer-Riquelme, A. J. (2009). Missing Data. Comprehensive Chemometrics, 285-314. doi:10.1016/b978-044452701-1.00125-3

Folch-Fortuny, A., Arteaga, F., & Ferrer, A. (2015). PCA model building with missing data: New proposals and a comparative study. Chemometrics and Intelligent Laboratory Systems, 146, 77-88. doi:10.1016/j.chemolab.2015.05.006 [+]
Grung, B., & Manne, R. (1998). Missing values in principal component analysis. Chemometrics and Intelligent Laboratory Systems, 42(1-2), 125-139. doi:10.1016/s0169-7439(98)00031-8

Arteaga, F., & Ferrer-Riquelme, A. J. (2009). Missing Data. Comprehensive Chemometrics, 285-314. doi:10.1016/b978-044452701-1.00125-3

Folch-Fortuny, A., Arteaga, F., & Ferrer, A. (2015). PCA model building with missing data: New proposals and a comparative study. Chemometrics and Intelligent Laboratory Systems, 146, 77-88. doi:10.1016/j.chemolab.2015.05.006

Arteaga, F., & Ferrer, A. (2002). Dealing with missing data in MSPC: several methods, different interpretations, some examples. Journal of Chemometrics, 16(8-10), 408-418. doi:10.1002/cem.750

Arteaga, F., & Ferrer, A. (2005). Framework for regression-based missing data imputation methods in on-line MSPC. Journal of Chemometrics, 19(8), 439-447. doi:10.1002/cem.946

Nelson, P. R. C., Taylor, P. A., & MacGregor, J. F. (1996). Missing data methods in PCA and PLS: Score calculations with incomplete observations. Chemometrics and Intelligent Laboratory Systems, 35(1), 45-65. doi:10.1016/s0169-7439(96)00007-x

Walczak, B., & Massart, D. L. (2001). Dealing with missing data. Chemometrics and Intelligent Laboratory Systems, 58(1), 15-27. doi:10.1016/s0169-7439(01)00131-9

Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data. doi:10.1201/9781439821862

Folch-Fortuny, A., Arteaga, F., & Ferrer, A. (2016). Missing Data Imputation Toolbox for MATLAB. Chemometrics and Intelligent Laboratory Systems, 154, 93-100. doi:10.1016/j.chemolab.2016.03.019

ProSensus Multivariate release 16.02 2016

SIMCA release 14 2015

The Unscrambler X Release 10.4 2016

PLS_Toolbox Release 8.1 2016

Liu, Y., & Brown, S. D. (2013). Comparison of five iterative imputation methods for multivariate classification. Chemometrics and Intelligent Laboratory Systems, 120, 106-115. doi:10.1016/j.chemolab.2012.11.010

White, I. R., Royston, P., & Wood, A. M. (2010). Multiple imputation using chained equations: Issues and guidance for practice. Statistics in Medicine, 30(4), 377-399. doi:10.1002/sim.4067

Schneider, T. (2001). Analysis of Incomplete Climate Data: Estimation of Mean Values and Covariance Matrices and Imputation of Missing Values. Journal of Climate, 14(5), 853-871. doi:10.1175/1520-0442(2001)014<0853:aoicde>2.0.co;2

Fierro, R. D., Golub, G. H., Hansen, P. C., & O’Leary, D. P. (1997). Regularization by Truncated Total Least Squares. SIAM Journal on Scientific Computing, 18(4), 1223-1241. doi:10.1137/s1064827594263837

Puwakkatiya-Kankanamage, E. H., García-Muñoz, S., & Biegler, L. T. (2014). An optimization-based undeflated PLS (OUPLS) method to handle missing data in the training set. Journal of Chemometrics, 28(7), 575-584. doi:10.1002/cem.2618

Camacho, J., Picó, J., & Ferrer, A. (2008). Bilinear modelling of batch processes. Part II: a comparison of PLS soft-sensors. Journal of Chemometrics, 22(10), 533-547. doi:10.1002/cem.1179

Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1-17. doi:10.1016/0003-2670(86)80028-9

Kubinyi, H. (1996). Evolutionary variable selection in regression and PLS analyses. Journal of Chemometrics, 10(2), 119-133. doi:10.1002/(sici)1099-128x(199603)10:2<119::aid-cem409>3.0.co;2-4

González-Martínez, J. M., Folch-Fortuny, A., Llaneras, F., Tortajada, M., Picó, J., & Ferrer, A. (2014). Metabolic flux understanding of Pichia pastoris grown on heterogenous culture media. Chemometrics and Intelligent Laboratory Systems, 134, 89-99. doi:10.1016/j.chemolab.2014.02.003

Folch-Fortuny, A., Vitale, R., de Noord, O. E., & Ferrer, A. (2017). Calibration transfer between NIR spectrometers: New proposals and a comparative study. Journal of Chemometrics, 31(3), e2874. doi:10.1002/cem.2874

Arteaga, F., & Ferrer, A. (2010). How to simulate normal data sets with the desired correlation structure. Chemometrics and Intelligent Laboratory Systems, 101(1), 38-42. doi:10.1016/j.chemolab.2009.12.003

Arteaga, F., & Ferrer, A. (2013). Building covariance matrices with the desired structure. Chemometrics and Intelligent Laboratory Systems, 127, 80-88. doi:10.1016/j.chemolab.2013.06.003

Folch-Fortuny, A., Arteaga, F., & Ferrer, A. (2016). Assessment of maximum likelihood PCA missing data imputation. Journal of Chemometrics, 30(7), 386-393. doi:10.1002/cem.2804

Saccenti, E., & Camacho, J. (2015). On the use of the observation-wisek-fold operation in PCA cross-validation. Journal of Chemometrics, 29(8), 467-478. doi:10.1002/cem.2726

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem