- -

Structural connectivity centrality changes mark the path towards Alzheimer's disease

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Structural connectivity centrality changes mark the path towards Alzheimer's disease

Show full item record

Peraza, LR.; Díaz-Parra, A.; Kennion, O.; Moratal, D.; Taylor, J.; Kaiser, M.; Bauer, R. (2019). Structural connectivity centrality changes mark the path towards Alzheimer's disease. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring. 11:98-107. https://doi.org/10.1016/j.dadm.2018.12.004

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/153471

Files in this item

Item Metadata

Title: Structural connectivity centrality changes mark the path towards Alzheimer's disease
Author: Peraza, Luis R. Díaz-Parra, Antonio Kennion, Oliver Moratal, David Taylor, John-Paul Kaiser, Marcus Bauer, Roman
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Issued date:
Abstract:
[EN] Introduction: The pathophysiological process of Alzheimer's disease is thought to begin years before clinical decline, with evidence suggesting prion-like spreading processes of neurofibrillary tangles and amyloid ...[+]
Subjects: Alzheimer s disease , Diffusion MRI , Structural brain connectivity , Network centrality , Computational modeling , Machine learning
Copyrigths: Reconocimiento (by)
Source:
Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring. (eissn: 2352-8729 )
DOI: 10.1016/j.dadm.2018.12.004
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.dadm.2018.12.004
Project ID:
info:eu-repo/grantAgreement/UKRI//EP%2FK026992%2F1/GB/Modelling Human Brain Development/
...[+]
info:eu-repo/grantAgreement/UKRI//EP%2FK026992%2F1/GB/Modelling Human Brain Development/
info:eu-repo/grantAgreement/UKRI//MR%2FN015037%2F1/GB/Computational modeling of retinal development/
info:eu-repo/grantAgreement/UKRI//EP%2FS001433%2F1/GB/Innovation Fellowship: Computational modelling of cryopreservation of biological tissue/
info:eu-repo/grantAgreement/NIH//U01AG024904/
info:eu-repo/grantAgreement/MECD//FPU13%2F01475/ES/FPU13%2F01475/
info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-2-R/ES/ANALISIS DE TEXTURAS EN IMAGEN CEREBRAL MULTIMODAL POR RESONANCIA MAGNETICA PARA UNA DETECCION TEMPRANA DE ALTERACIONES EN LA RED Y BIOMARCADORES DE ENFERMEDAD/
[-]
Thanks:
The authors would like to thank Peter N. Taylor and Yujiang Wang for their stimulating feedback and suggestions. Funding: A.D.-P. was supported by grant FPU13/01475 from the Spanish Ministerio de Educacion, Cultura ...[+]
Type: Artículo

References

(2016). 2016 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 12(4), 459-509. doi:10.1016/j.jalz.2016.03.001

Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., … Phelps, C. H. (2011). Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 280-292. doi:10.1016/j.jalz.2011.03.003

Jack, C. R., Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. W., Aisen, P. S., … Trojanowski, J. Q. (2013). Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. The Lancet Neurology, 12(2), 207-216. doi:10.1016/s1474-4422(12)70291-0 [+]
(2016). 2016 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 12(4), 459-509. doi:10.1016/j.jalz.2016.03.001

Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., … Phelps, C. H. (2011). Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 280-292. doi:10.1016/j.jalz.2011.03.003

Jack, C. R., Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. W., Aisen, P. S., … Trojanowski, J. Q. (2013). Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. The Lancet Neurology, 12(2), 207-216. doi:10.1016/s1474-4422(12)70291-0

Villemagne, V. L., Burnham, S., Bourgeat, P., Brown, B., Ellis, K. A., Salvado, O., … Masters, C. L. (2013). Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. The Lancet Neurology, 12(4), 357-367. doi:10.1016/s1474-4422(13)70044-9

Jack, C. R., & Holtzman, D. M. (2013). Biomarker Modeling of Alzheimer’s Disease. Neuron, 80(6), 1347-1358. doi:10.1016/j.neuron.2013.12.003

Jucker, M., & Walker, L. C. (2011). Pathogenic protein seeding in alzheimer disease and other neurodegenerative disorders. Annals of Neurology, 70(4), 532-540. doi:10.1002/ana.22615

Brettschneider, J., Tredici, K. D., Lee, V. M.-Y., & Trojanowski, J. Q. (2015). Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nature Reviews Neuroscience, 16(2), 109-120. doi:10.1038/nrn3887

Jucker, M., & Walker, L. C. (2013). Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature, 501(7465), 45-51. doi:10.1038/nature12481

Frost, B., & Diamond, M. I. (2009). Prion-like mechanisms in neurodegenerative diseases. Nature Reviews Neuroscience, 11(3), 155-159. doi:10.1038/nrn2786

Warren, J. D., Rohrer, J. D., Schott, J. M., Fox, N. C., Hardy, J., & Rossor, M. N. (2013). Molecular nexopathies: a new paradigm of neurodegenerative disease. Trends in Neurosciences, 36(10), 561-569. doi:10.1016/j.tins.2013.06.007

Fornito, A., Zalesky, A., & Breakspear, M. (2015). The connectomics of brain disorders. Nature Reviews Neuroscience, 16(3), 159-172. doi:10.1038/nrn3901

Zhou, J., Gennatas, E. D., Kramer, J. H., Miller, B. L., & Seeley, W. W. (2012). Predicting Regional Neurodegeneration from the Healthy Brain Functional Connectome. Neuron, 73(6), 1216-1227. doi:10.1016/j.neuron.2012.03.004

Brier, M. R., Thomas, J. B., & Ances, B. M. (2014). Network Dysfunction in Alzheimer’s Disease: Refining the Disconnection Hypothesis. Brain Connectivity, 4(5), 299-311. doi:10.1089/brain.2014.0236

Delbeuck, X. (2003). Neuropsychology Review, 13(2), 79-92. doi:10.1023/a:1023832305702

Tijms, B. M., Wink, A. M., de Haan, W., van der Flier, W. M., Stam, C. J., Scheltens, P., & Barkhof, F. (2013). Alzheimer’s disease: connecting findings from graph theoretical studies of brain networks. Neurobiology of Aging, 34(8), 2023-2036. doi:10.1016/j.neurobiolaging.2013.02.020

Stam, C. J. (2014). Modern network science of neurological disorders. Nature Reviews Neuroscience, 15(10), 683-695. doi:10.1038/nrn3801

Petersen, R. C., Aisen, P. S., Beckett, L. A., Donohue, M. C., Gamst, A. C., Harvey, D. J., … Weiner, M. W. (2009). Alzheimer’s Disease Neuroimaging Initiative (ADNI): Clinical characterization. Neurology, 74(3), 201-209. doi:10.1212/wnl.0b013e3181cb3e25

Nooner, K. B., Colcombe, S. J., Tobe, R. H., Mennes, M., Benedict, M. M., Moreno, A. L., … Milham, M. P. (2012). The NKI-Rockland Sample: A Model for Accelerating the Pace of Discovery Science in Psychiatry. Frontiers in Neuroscience, 6. doi:10.3389/fnins.2012.00152

Landau, S. M., Fero, A., Baker, S. L., Koeppe, R., Mintun, M., Chen, K., … Jagust, W. J. (2015). Measurement of Longitudinal  -Amyloid Change with 18F-Florbetapir PET and Standardized Uptake Value Ratios. Journal of Nuclear Medicine, 56(4), 567-574. doi:10.2967/jnumed.114.148981

Lim, S., Han, C. E., Uhlhaas, P. J., & Kaiser, M. (2013). Preferential Detachment During Human Brain Development: Age- and Sex-Specific Structural Connectivity in Diffusion Tensor Imaging (DTI) Data. Cerebral Cortex, 25(6), 1477-1489. doi:10.1093/cercor/bht333

Pastor-Satorras, R., Castellano, C., Van Mieghem, P., & Vespignani, A. (2015). Epidemic processes in complex networks. Reviews of Modern Physics, 87(3), 925-979. doi:10.1103/revmodphys.87.925

Collin, G., & van den Heuvel, M. P. (2013). The Ontogeny of the Human Connectome. The Neuroscientist, 19(6), 616-628. doi:10.1177/1073858413503712

Fischi-Gómez, E., Vasung, L., Meskaldji, D.-E., Lazeyras, F., Borradori-Tolsa, C., Hagmann, P., … Hüppi, P. S. (2014). Structural Brain Connectivity in School-Age Preterm Infants Provides Evidence for Impaired Networks Relevant for Higher Order Cognitive Skills and Social Cognition. Cerebral Cortex, 25(9), 2793-2805. doi:10.1093/cercor/bhu073

Zhao, T., Cao, M., Niu, H., Zuo, X.-N., Evans, A., He, Y., … Shu, N. (2015). Age-related changes in the topological organization of the white matter structural connectome across the human lifespan. Human Brain Mapping, 36(10), 3777-3792. doi:10.1002/hbm.22877

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning. Springer Texts in Statistics. doi:10.1007/978-1-4614-7138-7

Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52(3), 1059-1069. doi:10.1016/j.neuroimage.2009.10.003

Batalle, D., Hughes, E. J., Zhang, H., Tournier, J.-D., Tusor, N., Aljabar, P., … Counsell, S. J. (2017). Early development of structural networks and the impact of prematurity on brain connectivity. NeuroImage, 149, 379-392. doi:10.1016/j.neuroimage.2017.01.065

10.1162/153244303322753616. (2000). CrossRef Listing of Deleted DOIs, 1. doi:10.1162/153244303322753616

Saeys, Y., Inza, I., & Larranaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19), 2507-2517. doi:10.1093/bioinformatics/btm344

Lemm, S., Blankertz, B., Dickhaus, T., & Müller, K.-R. (2011). Introduction to machine learning for brain imaging. NeuroImage, 56(2), 387-399. doi:10.1016/j.neuroimage.2010.11.004

Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: A tutorial overview. NeuroImage, 45(1), S199-S209. doi:10.1016/j.neuroimage.2008.11.007

Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29-36. doi:10.1148/radiology.143.1.7063747

Yekutieli, D., & Benjamini, Y. (1999). Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. Journal of Statistical Planning and Inference, 82(1-2), 171-196. doi:10.1016/s0378-3758(99)00041-5

Whitwell, J. L., Josephs, K. A., Murray, M. E., Kantarci, K., Przybelski, S. A., Weigand, S. D., … Jack, C. R. (2008). MRI correlates of neurofibrillary tangle pathology at autopsy: A voxel-based morphometry study. Neurology, 71(10), 743-749. doi:10.1212/01.wnl.0000324924.91351.7d

Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H., & Del Tredici, K. (2006). Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathologica, 112(4), 389-404. doi:10.1007/s00401-006-0127-z

Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., … Johnson, K. A. (2009). Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer’s Disease. Journal of Neuroscience, 29(6), 1860-1873. doi:10.1523/jneurosci.5062-08.2009

Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative Diseases Target Large-Scale Human Brain Networks. Neuron, 62(1), 42-52. doi:10.1016/j.neuron.2009.03.024

Frisoni, G. B., Prestia, A., Rasser, P. E., Bonetti, M., & Thompson, P. M. (2009). In vivo mapping of incremental cortical atrophy from incipient to overt Alzheimer’s disease. Journal of Neurology, 256(6), 916-924. doi:10.1007/s00415-009-5040-7

Pini, L., Pievani, M., Bocchetta, M., Altomare, D., Bosco, P., Cavedo, E., … Frisoni, G. B. (2016). Brain atrophy in Alzheimer’s Disease and aging. Ageing Research Reviews, 30, 25-48. doi:10.1016/j.arr.2016.01.002

Frisoni, G. B., Fox, N. C., Jack, C. R., Scheltens, P., & Thompson, P. M. (2010). The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology, 6(2), 67-77. doi:10.1038/nrneurol.2009.215

Mak, E., Gabel, S., Mirette, H., Su, L., Williams, G. B., Waldman, A., … O’Brien, J. (2017). Structural neuroimaging in preclinical dementia: From microstructural deficits and grey matter atrophy to macroscale connectomic changes. Ageing Research Reviews, 35, 250-264. doi:10.1016/j.arr.2016.10.001

Miller, K. L., Alfaro-Almagro, F., Bangerter, N. K., Thomas, D. L., Yacoub, E., Xu, J., … Smith, S. M. (2016). Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nature Neuroscience, 19(11), 1523-1536. doi:10.1038/nn.4393

Wirths, O. (2003). α-Synuclein, Aβ and Alzheimer’s disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 27(1), 103-108. doi:10.1016/s0278-5846(02)00339-1

Saxena, S., & Caroni, P. (2011). Selective Neuronal Vulnerability in Neurodegenerative Diseases: from Stressor Thresholds to Degeneration. Neuron, 71(1), 35-48. doi:10.1016/j.neuron.2011.06.031

Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., & Walhovd, K. B. (2014). What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Progress in Neurobiology, 117, 20-40. doi:10.1016/j.pneurobio.2014.02.004

Kaiser, M. (2013). The potential of the human connectome as a biomarker of brain disease. Frontiers in Human Neuroscience, 7. doi:10.3389/fnhum.2013.00484

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record