- -

Structural connectivity centrality changes mark the path towards Alzheimer's disease

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Structural connectivity centrality changes mark the path towards Alzheimer's disease

Show simple item record

Files in this item

dc.contributor.author Peraza, Luis R. es_ES
dc.contributor.author Díaz-Parra, Antonio es_ES
dc.contributor.author Kennion, Oliver es_ES
dc.contributor.author Moratal, David es_ES
dc.contributor.author Taylor, John-Paul es_ES
dc.contributor.author Kaiser, Marcus es_ES
dc.contributor.author Bauer, Roman es_ES
dc.date.accessioned 2020-10-29T04:32:28Z
dc.date.available 2020-10-29T04:32:28Z
dc.date.issued 2019-01-18 es_ES
dc.identifier.uri http://hdl.handle.net/10251/153471
dc.description.abstract [EN] Introduction: The pathophysiological process of Alzheimer's disease is thought to begin years before clinical decline, with evidence suggesting prion-like spreading processes of neurofibrillary tangles and amyloid plaques. Methods: Using diffusion magnetic resonance imaging data from the Alzheimer's Disease Neuroimaging Initiative database, we first identified relevant features for dementia diagnosis. We then created dynamic models with the Nathan Kline Institute-Rockland Sample database to estimate the earliest detectable stage associated with dementia in the simulated disease progression. Results: A classifier based on centrality measures provides informative predictions. Strength and closeness centralities are the most discriminative features, which are associated with the medial temporal lobe and subcortical regions, together with posterior and occipital brain regions. Our model simulations suggest that changes associated with dementia begin to manifest structurally at early stages. Discussion: Our analyses suggest that diffusion magnetic resonance imaging-based centrality measures can offer a tool for early disease detection before clinical dementia onset. es_ES
dc.description.sponsorship The authors would like to thank Peter N. Taylor and Yujiang Wang for their stimulating feedback and suggestions. Funding: A.D.-P. was supported by grant FPU13/01475 from the Spanish Ministerio de Educacion, Cultura y Deporte (MECD). This work was supported in part by the Spanish Ministerio de Economıa y Competitividad (MINECO) and FEDER funds under grant BFU2015- 64380-C2-2-R. L.R.P. and J.-P.T. were supported by the NIHR Newcastle Biomedical Research Center awarded to the Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University. M.K. and R.B. were supported by the Engineering and Physical Sciences Research Council of the United Kingdom (EP/K026992/1). R.B. was also supported by (EP/S001433/1) and the Medical Research Council of the United Kingdom (MR/N015037/1). Data collection and sharing for this project was funded by the Alzheimer s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2- 0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and generous contributions from the following organizations: AbbVie, Alzheimer s Association; Alzheimer s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation NIH/U01 AG024904 es_ES
dc.relation EPSRC/EP/K026992/1 es_ES
dc.relation EPSRC/EP/S001433/1 es_ES
dc.relation MRC/MR/N015037/1 es_ES
dc.relation MINISTERIO DE EDUCACION /FPU13/01475 es_ES
dc.relation MINISTERIO DE ECONOMIA Y EMPRESA/BFU2015-64380-C2-2-R es_ES
dc.relation.ispartof Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Alzheimer s disease es_ES
dc.subject Diffusion MRI es_ES
dc.subject Structural brain connectivity es_ES
dc.subject Network centrality es_ES
dc.subject Computational modeling es_ES
dc.subject Machine learning es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Structural connectivity centrality changes mark the path towards Alzheimer's disease es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.dadm.2018.12.004 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Peraza, LR.; Díaz-Parra, A.; Kennion, O.; Moratal, D.; Taylor, J.; Kaiser, M.; Bauer, R. (2019). Structural connectivity centrality changes mark the path towards Alzheimer's disease. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring. 11:98-107. https://doi.org/10.1016/j.dadm.2018.12.004 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.dadm.2018.12.004 es_ES
dc.description.upvformatpinicio 98 es_ES
dc.description.upvformatpfin 107 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.identifier.eissn 2352-8729 es_ES
dc.identifier.pmid 30723773 es_ES
dc.identifier.pmcid PMC6350419 es_ES
dc.relation.pasarela S\405838 es_ES
dc.contributor.funder Ministerio de Educación es_ES
dc.contributor.funder U.S. Department of Defense es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.contributor.funder Medical Research Council, Reino Unido es_ES
dc.contributor.funder National Institute for Health Research, Reino Unido es_ES
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido es_ES
dc.description.references (2016). 2016 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 12(4), 459-509. doi:10.1016/j.jalz.2016.03.001 es_ES
dc.description.references Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., … Phelps, C. H. (2011). Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 280-292. doi:10.1016/j.jalz.2011.03.003 es_ES
dc.description.references Jack, C. R., Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. W., Aisen, P. S., … Trojanowski, J. Q. (2013). Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. The Lancet Neurology, 12(2), 207-216. doi:10.1016/s1474-4422(12)70291-0 es_ES
dc.description.references Villemagne, V. L., Burnham, S., Bourgeat, P., Brown, B., Ellis, K. A., Salvado, O., … Masters, C. L. (2013). Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. The Lancet Neurology, 12(4), 357-367. doi:10.1016/s1474-4422(13)70044-9 es_ES
dc.description.references Jack, C. R., & Holtzman, D. M. (2013). Biomarker Modeling of Alzheimer’s Disease. Neuron, 80(6), 1347-1358. doi:10.1016/j.neuron.2013.12.003 es_ES
dc.description.references Jucker, M., & Walker, L. C. (2011). Pathogenic protein seeding in alzheimer disease and other neurodegenerative disorders. Annals of Neurology, 70(4), 532-540. doi:10.1002/ana.22615 es_ES
dc.description.references Brettschneider, J., Tredici, K. D., Lee, V. M.-Y., & Trojanowski, J. Q. (2015). Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nature Reviews Neuroscience, 16(2), 109-120. doi:10.1038/nrn3887 es_ES
dc.description.references Jucker, M., & Walker, L. C. (2013). Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature, 501(7465), 45-51. doi:10.1038/nature12481 es_ES
dc.description.references Frost, B., & Diamond, M. I. (2009). Prion-like mechanisms in neurodegenerative diseases. Nature Reviews Neuroscience, 11(3), 155-159. doi:10.1038/nrn2786 es_ES
dc.description.references Warren, J. D., Rohrer, J. D., Schott, J. M., Fox, N. C., Hardy, J., & Rossor, M. N. (2013). Molecular nexopathies: a new paradigm of neurodegenerative disease. Trends in Neurosciences, 36(10), 561-569. doi:10.1016/j.tins.2013.06.007 es_ES
dc.description.references Fornito, A., Zalesky, A., & Breakspear, M. (2015). The connectomics of brain disorders. Nature Reviews Neuroscience, 16(3), 159-172. doi:10.1038/nrn3901 es_ES
dc.description.references Zhou, J., Gennatas, E. D., Kramer, J. H., Miller, B. L., & Seeley, W. W. (2012). Predicting Regional Neurodegeneration from the Healthy Brain Functional Connectome. Neuron, 73(6), 1216-1227. doi:10.1016/j.neuron.2012.03.004 es_ES
dc.description.references Brier, M. R., Thomas, J. B., & Ances, B. M. (2014). Network Dysfunction in Alzheimer’s Disease: Refining the Disconnection Hypothesis. Brain Connectivity, 4(5), 299-311. doi:10.1089/brain.2014.0236 es_ES
dc.description.references Delbeuck, X. (2003). Neuropsychology Review, 13(2), 79-92. doi:10.1023/a:1023832305702 es_ES
dc.description.references Tijms, B. M., Wink, A. M., de Haan, W., van der Flier, W. M., Stam, C. J., Scheltens, P., & Barkhof, F. (2013). Alzheimer’s disease: connecting findings from graph theoretical studies of brain networks. Neurobiology of Aging, 34(8), 2023-2036. doi:10.1016/j.neurobiolaging.2013.02.020 es_ES
dc.description.references Stam, C. J. (2014). Modern network science of neurological disorders. Nature Reviews Neuroscience, 15(10), 683-695. doi:10.1038/nrn3801 es_ES
dc.description.references Petersen, R. C., Aisen, P. S., Beckett, L. A., Donohue, M. C., Gamst, A. C., Harvey, D. J., … Weiner, M. W. (2009). Alzheimer’s Disease Neuroimaging Initiative (ADNI): Clinical characterization. Neurology, 74(3), 201-209. doi:10.1212/wnl.0b013e3181cb3e25 es_ES
dc.description.references Nooner, K. B., Colcombe, S. J., Tobe, R. H., Mennes, M., Benedict, M. M., Moreno, A. L., … Milham, M. P. (2012). The NKI-Rockland Sample: A Model for Accelerating the Pace of Discovery Science in Psychiatry. Frontiers in Neuroscience, 6. doi:10.3389/fnins.2012.00152 es_ES
dc.description.references Landau, S. M., Fero, A., Baker, S. L., Koeppe, R., Mintun, M., Chen, K., … Jagust, W. J. (2015). Measurement of Longitudinal  -Amyloid Change with 18F-Florbetapir PET and Standardized Uptake Value Ratios. Journal of Nuclear Medicine, 56(4), 567-574. doi:10.2967/jnumed.114.148981 es_ES
dc.description.references Lim, S., Han, C. E., Uhlhaas, P. J., & Kaiser, M. (2013). Preferential Detachment During Human Brain Development: Age- and Sex-Specific Structural Connectivity in Diffusion Tensor Imaging (DTI) Data. Cerebral Cortex, 25(6), 1477-1489. doi:10.1093/cercor/bht333 es_ES
dc.description.references Pastor-Satorras, R., Castellano, C., Van Mieghem, P., & Vespignani, A. (2015). Epidemic processes in complex networks. Reviews of Modern Physics, 87(3), 925-979. doi:10.1103/revmodphys.87.925 es_ES
dc.description.references Collin, G., & van den Heuvel, M. P. (2013). The Ontogeny of the Human Connectome. The Neuroscientist, 19(6), 616-628. doi:10.1177/1073858413503712 es_ES
dc.description.references Fischi-Gómez, E., Vasung, L., Meskaldji, D.-E., Lazeyras, F., Borradori-Tolsa, C., Hagmann, P., … Hüppi, P. S. (2014). Structural Brain Connectivity in School-Age Preterm Infants Provides Evidence for Impaired Networks Relevant for Higher Order Cognitive Skills and Social Cognition. Cerebral Cortex, 25(9), 2793-2805. doi:10.1093/cercor/bhu073 es_ES
dc.description.references Zhao, T., Cao, M., Niu, H., Zuo, X.-N., Evans, A., He, Y., … Shu, N. (2015). Age-related changes in the topological organization of the white matter structural connectome across the human lifespan. Human Brain Mapping, 36(10), 3777-3792. doi:10.1002/hbm.22877 es_ES
dc.description.references James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning. Springer Texts in Statistics. doi:10.1007/978-1-4614-7138-7 es_ES
dc.description.references Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52(3), 1059-1069. doi:10.1016/j.neuroimage.2009.10.003 es_ES
dc.description.references Batalle, D., Hughes, E. J., Zhang, H., Tournier, J.-D., Tusor, N., Aljabar, P., … Counsell, S. J. (2017). Early development of structural networks and the impact of prematurity on brain connectivity. NeuroImage, 149, 379-392. doi:10.1016/j.neuroimage.2017.01.065 es_ES
dc.description.references 10.1162/153244303322753616. (2000). CrossRef Listing of Deleted DOIs, 1. doi:10.1162/153244303322753616 es_ES
dc.description.references Saeys, Y., Inza, I., & Larranaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19), 2507-2517. doi:10.1093/bioinformatics/btm344 es_ES
dc.description.references Lemm, S., Blankertz, B., Dickhaus, T., & Müller, K.-R. (2011). Introduction to machine learning for brain imaging. NeuroImage, 56(2), 387-399. doi:10.1016/j.neuroimage.2010.11.004 es_ES
dc.description.references Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: A tutorial overview. NeuroImage, 45(1), S199-S209. doi:10.1016/j.neuroimage.2008.11.007 es_ES
dc.description.references Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29-36. doi:10.1148/radiology.143.1.7063747 es_ES
dc.description.references Yekutieli, D., & Benjamini, Y. (1999). Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. Journal of Statistical Planning and Inference, 82(1-2), 171-196. doi:10.1016/s0378-3758(99)00041-5 es_ES
dc.description.references Whitwell, J. L., Josephs, K. A., Murray, M. E., Kantarci, K., Przybelski, S. A., Weigand, S. D., … Jack, C. R. (2008). MRI correlates of neurofibrillary tangle pathology at autopsy: A voxel-based morphometry study. Neurology, 71(10), 743-749. doi:10.1212/01.wnl.0000324924.91351.7d es_ES
dc.description.references Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H., & Del Tredici, K. (2006). Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathologica, 112(4), 389-404. doi:10.1007/s00401-006-0127-z es_ES
dc.description.references Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., … Johnson, K. A. (2009). Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer’s Disease. Journal of Neuroscience, 29(6), 1860-1873. doi:10.1523/jneurosci.5062-08.2009 es_ES
dc.description.references Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative Diseases Target Large-Scale Human Brain Networks. Neuron, 62(1), 42-52. doi:10.1016/j.neuron.2009.03.024 es_ES
dc.description.references Frisoni, G. B., Prestia, A., Rasser, P. E., Bonetti, M., & Thompson, P. M. (2009). In vivo mapping of incremental cortical atrophy from incipient to overt Alzheimer’s disease. Journal of Neurology, 256(6), 916-924. doi:10.1007/s00415-009-5040-7 es_ES
dc.description.references Pini, L., Pievani, M., Bocchetta, M., Altomare, D., Bosco, P., Cavedo, E., … Frisoni, G. B. (2016). Brain atrophy in Alzheimer’s Disease and aging. Ageing Research Reviews, 30, 25-48. doi:10.1016/j.arr.2016.01.002 es_ES
dc.description.references Frisoni, G. B., Fox, N. C., Jack, C. R., Scheltens, P., & Thompson, P. M. (2010). The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology, 6(2), 67-77. doi:10.1038/nrneurol.2009.215 es_ES
dc.description.references Mak, E., Gabel, S., Mirette, H., Su, L., Williams, G. B., Waldman, A., … O’Brien, J. (2017). Structural neuroimaging in preclinical dementia: From microstructural deficits and grey matter atrophy to macroscale connectomic changes. Ageing Research Reviews, 35, 250-264. doi:10.1016/j.arr.2016.10.001 es_ES
dc.description.references Miller, K. L., Alfaro-Almagro, F., Bangerter, N. K., Thomas, D. L., Yacoub, E., Xu, J., … Smith, S. M. (2016). Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nature Neuroscience, 19(11), 1523-1536. doi:10.1038/nn.4393 es_ES
dc.description.references Wirths, O. (2003). α-Synuclein, Aβ and Alzheimer’s disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 27(1), 103-108. doi:10.1016/s0278-5846(02)00339-1 es_ES
dc.description.references Saxena, S., & Caroni, P. (2011). Selective Neuronal Vulnerability in Neurodegenerative Diseases: from Stressor Thresholds to Degeneration. Neuron, 71(1), 35-48. doi:10.1016/j.neuron.2011.06.031 es_ES
dc.description.references Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., & Walhovd, K. B. (2014). What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Progress in Neurobiology, 117, 20-40. doi:10.1016/j.pneurobio.2014.02.004 es_ES
dc.description.references Kaiser, M. (2013). The potential of the human connectome as a biomarker of brain disease. Frontiers in Human Neuroscience, 7. doi:10.3389/fnhum.2013.00484 es_ES


This item appears in the following Collection(s)

Show simple item record