- -

Stabilized dye-pigment formulations with platy and tubule nanoclays

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Stabilized dye-pigment formulations with platy and tubule nanoclays

Show full item record

Micó-Vicent, B.; Martínez-Verdú, FM.; Novikov, A.; Stavitskaya, A.; Vinokurov, V.; Rozhina, E.; Fakhrullin, R.... (2017). Stabilized dye-pigment formulations with platy and tubule nanoclays. Advanced Functional Materials. 28(27):1-9. https://doi.org/10.1002/adfm.201703553

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/153676

Files in this item

Item Metadata

Title: Stabilized dye-pigment formulations with platy and tubule nanoclays
Author: Micó-Vicent, B. Martínez-Verdú, Francisco M. Novikov, Andrei Stavitskaya, Anna Vinokurov, Vladimir Rozhina, Elvira Fakhrullin, Rawil Yendluri, Raghuvara Lvov, Yuri
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica
Issued date:
Abstract:
[EN] Alumosilicate materials of different morphologies, such as platy and tubule nanoclays, may serve as an efficient, protective encasing for colored organic substances and nanoparticles. The adsorption of dyes onto the ...[+]
Subjects: Natual dyes , Nanoclays , Hybrid pigments , Guantum dots
Copyrigths: Reserva de todos los derechos
Source:
Advanced Functional Materials. (issn: 1616-301X )
DOI: 10.1002/adfm.201703553
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/adfm.201703553
Project ID:
info:eu-repo/grantAgreement/MICINN//DPI2011-30090-C02-02/ES/NUEVOS METODOS DE MEJORA DE LA CORRELACION INSTRUMENTAL Y VISUAL DE MATERIALES ESPECIALES E INNOVADORES/
info:eu-repo/grantAgreement/MINECO//DPI2015-68514-R/
info:eu-repo/grantAgreement/Ministry of Education and Science of the Russian Federation//14.Z50.31.003/
Thanks:
Y.L., V.V., A.S., and A.N. thank the Ministry of Education and Science of the Russian Federation (grant 14.Z50.31.0035) for funding this work. Authors are grateful to Mikhail S. Kotelev (Gubkin University) for the TEM ...[+]
Type: Artículo

References

Massos, A., & Turner, A. (2017). Cadmium, lead and bromine in beached microplastics. Environmental Pollution, 227, 139-145. doi:10.1016/j.envpol.2017.04.034

Mirjalili, M., Nazarpoor, K., & Karimi, L. (2011). Eco-friendly dyeing of wool using natural dye from weld as co-partner with synthetic dye. Journal of Cleaner Production, 19(9-10), 1045-1051. doi:10.1016/j.jclepro.2011.02.001

Ebrahimi, I., & Parvinzadeh Gashti, M. (2016). Extraction of polyphenolic dyes from henna, pomegranate rind, andPterocarya fraxinifoliafor nylon 6 dyeing. Coloration Technology, 132(2), 162-176. doi:10.1111/cote.12204 [+]
Massos, A., & Turner, A. (2017). Cadmium, lead and bromine in beached microplastics. Environmental Pollution, 227, 139-145. doi:10.1016/j.envpol.2017.04.034

Mirjalili, M., Nazarpoor, K., & Karimi, L. (2011). Eco-friendly dyeing of wool using natural dye from weld as co-partner with synthetic dye. Journal of Cleaner Production, 19(9-10), 1045-1051. doi:10.1016/j.jclepro.2011.02.001

Ebrahimi, I., & Parvinzadeh Gashti, M. (2016). Extraction of polyphenolic dyes from henna, pomegranate rind, andPterocarya fraxinifoliafor nylon 6 dyeing. Coloration Technology, 132(2), 162-176. doi:10.1111/cote.12204

Rather, L. J., Shahid-ul-Islam, Shabbir, M., Bukhari, M. N., Shahid, M., Khan, M. A., & Mohammad, F. (2016). Ecological dyeing of Woolen yarn with Adhatoda vasica natural dye in the presence of biomordants as an alternative copartner to metal mordants. Journal of Environmental Chemical Engineering, 4(3), 3041-3049. doi:10.1016/j.jece.2016.06.019

Polette-Niewold, L. A., Manciu, F. S., Torres, B., Alvarado, M., & Chianelli, R. R. (2007). Organic/inorganic complex pigments: Ancient colors Maya Blue. Journal of Inorganic Biochemistry, 101(11-12), 1958-1973. doi:10.1016/j.jinorgbio.2007.07.009

Kohno, Y., Inagawa, M., Ikoma, S., Shibata, M., Matsushima, R., Fukuhara, C., … Kobayashi, K. (2011). Stabilization of a hydrophobic natural dye by intercalation into organo-montmorillonite. Applied Clay Science, 54(3-4), 202-205. doi:10.1016/j.clay.2011.09.001

E. Baena-Murillo B. Micó-Vicent F. M. Martínez-Verdú Patent WO2013ES70026 20130123 2013

Huskić, M., Žigon, M., & Ivanković, M. (2013). Comparison of the properties of clay polymer nanocomposites prepared by montmorillonite modified by silane and by quaternary ammonium salts. Applied Clay Science, 85, 109-115. doi:10.1016/j.clay.2013.09.004

Kohno, Y., Asai, S., Shibata, M., Fukuhara, C., Maeda, Y., Tomita, Y., & Kobayashi, K. (2014). Improved photostability of hydrophobic natural dye incorporated in organo-modified hydrotalcite. Journal of Physics and Chemistry of Solids, 75(8), 945-950. doi:10.1016/j.jpcs.2014.04.010

Kohno, Y., Haga, E., Yoda, K., Shibata, M., Fukuhara, C., Tomita, Y., … Kobayashi, K. (2014). Adsorption behavior of natural anthocyanin dye on mesoporous silica. Journal of Physics and Chemistry of Solids, 75(1), 48-51. doi:10.1016/j.jpcs.2013.08.007

Wang, C.-C., Juang, L.-C., Hsu, T.-C., Lee, C.-K., Lee, J.-F., & Huang, F.-C. (2004). Adsorption of basic dyes onto montmorillonite. Journal of Colloid and Interface Science, 273(1), 80-86. doi:10.1016/j.jcis.2003.12.028

Salam, H., Dong, Y., & Davies, I. (2015). Development of biobased polymer/clay nanocomposites. Fillers and Reinforcements for Advanced Nanocomposites, 101-132. doi:10.1016/b978-0-08-100079-3.00006-5

Tombácz, E., & Szekeres, M. (2004). Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes. Applied Clay Science, 27(1-2), 75-94. doi:10.1016/j.clay.2004.01.001

Durán, J. D. G., Ramos-Tejada, M. M., Arroyo, F. J., & González-Caballero, F. (2000). Rheological and Electrokinetic Properties of Sodium Montmorillonite Suspensions. Journal of Colloid and Interface Science, 229(1), 107-117. doi:10.1006/jcis.2000.6956

B. Micó-Vicent F. M. Martínez-Verdú Spain Patent ES2568833 2017

Lvov, Y., Wang, W., Zhang, L., & Fakhrullin, R. (2015). Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds. Advanced Materials, 28(6), 1227-1250. doi:10.1002/adma.201502341

Liu, M., Jia, Z., Jia, D., & Zhou, C. (2014). Recent advance in research on halloysite nanotubes-polymer nanocomposite. Progress in Polymer Science, 39(8), 1498-1525. doi:10.1016/j.progpolymsci.2014.04.004

Du, M., Guo, B., & Jia, D. (2010). Newly emerging applications of halloysite nanotubes: a review. Polymer International, 59(5), 574-582. doi:10.1002/pi.2754

Yuan, P., Tan, D., & Annabi-Bergaya, F. (2015). Properties and applications of halloysite nanotubes: recent research advances and future prospects. Applied Clay Science, 112-113, 75-93. doi:10.1016/j.clay.2015.05.001

Cavallaro, G., Lazzara, G., & Milioto, S. (2012). Exploiting the Colloidal Stability and Solubilization Ability of Clay Nanotubes/Ionic Surfactant Hybrid Nanomaterials. The Journal of Physical Chemistry C, 116(41), 21932-21938. doi:10.1021/jp307961q

Micó-Vicent, B., Jordán, J., Martínez-Verdú, F., & Balart, R. (2016). A combination of three surface modifiers for the optimal generation and application of natural hybrid nanopigments in a biodegradable resin. Journal of Materials Science, 52(2), 889-898. doi:10.1007/s10853-016-0384-8

R. Price, B. P. Gaber, Y. Lvov, R. (2001). In-vitro release characteristics of tetracycline HCl, khellin and nicotinamide adenine dineculeotide from halloysite; a cylindrical mineral. Journal of Microencapsulation, 18(6), 713-722. doi:10.1080/02652040010019532

Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D., & Delvaux, B. (2005). Halloysite clay minerals — a review. Clay Minerals, 40(4), 383-426. doi:10.1180/0009855054040180

Lvov, Y. M., Shchukin, D. G., Möhwald, H., & Price, R. R. (2008). Halloysite Clay Nanotubes for Controlled Release of Protective Agents. ACS Nano, 2(5), 814-820. doi:10.1021/nn800259q

Lvov, Y., & Abdullayev, E. (2013). Functional polymer–clay nanotube composites with sustained release of chemical agents. Progress in Polymer Science, 38(10-11), 1690-1719. doi:10.1016/j.progpolymsci.2013.05.009

Abdullayev, E., Joshi, A., Wei, W., Zhao, Y., & Lvov, Y. (2012). Enlargement of Halloysite Clay Nanotube Lumen by Selective Etching of Aluminum Oxide. ACS Nano, 6(8), 7216-7226. doi:10.1021/nn302328x

Yah, W. O., Takahara, A., & Lvov, Y. M. (2012). Selective Modification of Halloysite Lumen with Octadecylphosphonic Acid: New Inorganic Tubular Micelle. Journal of the American Chemical Society, 134(3), 1853-1859. doi:10.1021/ja210258y

Cavallaro, G., Lazzara, G., Milioto, S., Parisi, F., & Sanzillo, V. (2013). Modified Halloysite Nanotubes: Nanoarchitectures for Enhancing the Capture of Oils from Vapor and Liquid Phases. ACS Applied Materials & Interfaces, 6(1), 606-612. doi:10.1021/am404693r

Silvi, S., & Credi, A. (2015). Luminescent sensors based on quantum dot–molecule conjugates. Chemical Society Reviews, 44(13), 4275-4289. doi:10.1039/c4cs00400k

Jin, T., & Imamura, Y. (2015). Applications of Highly Bright PbS Quantum Dots to Non-Invasive Near-Infrared Fluorescence Imaging in the Second Optical Window. ECS Journal of Solid State Science and Technology, 5(1), R3138-R3145. doi:10.1149/2.0171601jss

Xu, Z., Yan, J., Xu, C., Cheng, C., Jiang, C., Liu, X., & Qiu, J. (2017). Tunable near-infrared emission and fluorescent lifetime of PbSe quantum dot-doped borosilicate glass. Journal of Alloys and Compounds, 711, 58-63. doi:10.1016/j.jallcom.2017.03.347

Petryayeva, E., Algar, W. R., & Medintz, I. L. (2013). Quantum Dots in Bioanalysis: A Review of Applications across Various Platforms for Fluorescence Spectroscopy and Imaging. Applied Spectroscopy, 67(3), 215-252. doi:10.1366/12-06948

Shen, H., Bai, X., Wang, A., Wang, H., Qian, L., Yang, Y., … Li, L. S. (2013). High-Efficient Deep-Blue Light-Emitting Diodes by Using High Quality ZnxCd1-xS/ZnS Core/Shell Quantum Dots. Advanced Functional Materials, 24(16), 2367-2373. doi:10.1002/adfm.201302964

Li, Q., Jin, X., Yang, Y., Wang, H., Xu, H., Cheng, Y., … Luo, S. (2015). Nd2(S, Se, Te)3Colloidal Quantum Dots: Synthesis, Energy Level Alignment, Charge Transfer Dynamics, and Their Applications to Solar Cells. Advanced Functional Materials, 26(2), 254-266. doi:10.1002/adfm.201503433

Liu, Q., Campbell, M. G., Evans, J. S., & Smalyukh, I. I. (2014). Nanocrystals: Orientationally Ordered Colloidal Co-Dispersions of Gold Nanorods and Cellulose Nanocrystals (Adv. Mater. 42/2014). Advanced Materials, 26(42), 7133-7133. doi:10.1002/adma.201470287

Benayas, A., Ren, F., Carrasco, E., Marzal, V., del Rosal, B., Gonfa, B. A., … Vetrone, F. (2015). PbS/CdS/ZnS Quantum Dots: A Multifunctional Platform for In Vivo Near-Infrared Low-Dose Fluorescence Imaging. Advanced Functional Materials, 25(42), 6650-6659. doi:10.1002/adfm.201502632

Chen, J., Kong, Y., Wang, W., Fang, H., Wo, Y., Zhou, D., … Chen, S. (2016). Direct water-phase synthesis of lead sulfide quantum dots encapsulated by β-lactoglobulin for in vivo second near infrared window imaging with reduced toxicity. Chemical Communications, 52(21), 4025-4028. doi:10.1039/c6cc00099a

Malgras, V., Tominaka, S., Ryan, J. W., Henzie, J., Takei, T., Ohara, K., & Yamauchi, Y. (2016). Observation of Quantum Confinement in Monodisperse Methylammonium Lead Halide Perovskite Nanocrystals Embedded in Mesoporous Silica. Journal of the American Chemical Society, 138(42), 13874-13881. doi:10.1021/jacs.6b05608

Tiwari, A., & Dhoble, S. J. (2016). Stabilization of ZnS nanoparticles by polymeric matrices: syntheses, optical properties and recent applications. RSC Advances, 6(69), 64400-64420. doi:10.1039/c6ra13108e

Dzamukova, M. R., Naumenko, E. A., Rozhina, E. V., Trifonov, A. A., & Fakhrullin, R. F. (2015). Cell surface engineering with polyelectrolyte-stabilized magnetic nanoparticles: A facile approach for fabrication of artificial multicellular tissue-mimicking clusters. Nano Research, 8(8), 2515-2532. doi:10.1007/s12274-015-0759-1

Tai, S., Sun, Y., Squires, J. M., Zhang, H., Oh, W. K., Liang, C.-Z., & Huang, J. (2011). PC3 is a cell line characteristic of prostatic small cell carcinoma. The Prostate, 71(15), 1668-1679. doi:10.1002/pros.21383

Konnova, S. A., Sharipova, I. R., Demina, T. A., Osin, Y. N., Yarullina, D. R., Ilinskaya, O. N., … Fakhrullin, R. F. (2013). Biomimetic cell-mediated three-dimensional assembly of halloysite nanotubes. Chemical Communications, 49(39), 4208. doi:10.1039/c2cc38254g

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record