- -

Stabilized dye-pigment formulations with platy and tubule nanoclays

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Stabilized dye-pigment formulations with platy and tubule nanoclays

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Micó-Vicent, B. es_ES
dc.contributor.author Martínez-Verdú, Francisco M. es_ES
dc.contributor.author Novikov, Andrei es_ES
dc.contributor.author Stavitskaya, Anna es_ES
dc.contributor.author Vinokurov, Vladimir es_ES
dc.contributor.author Rozhina, Elvira es_ES
dc.contributor.author Fakhrullin, Rawil es_ES
dc.contributor.author Yendluri, Raghuvara es_ES
dc.contributor.author Lvov, Yuri es_ES
dc.date.accessioned 2020-10-30T04:31:55Z
dc.date.available 2020-10-30T04:31:55Z
dc.date.issued 2017-07-04 es_ES
dc.identifier.issn 1616-301X es_ES
dc.identifier.uri http://hdl.handle.net/10251/153676
dc.description.abstract [EN] Alumosilicate materials of different morphologies, such as platy and tubule nanoclays, may serve as an efficient, protective encasing for colored organic substances and nanoparticles. The adsorption of dyes onto the nanoclays increases their stability against thermal, oxidative, and acid¿base-induced decomposition. Natural organic dyes form stable composites with clays, thus allowing for ¿green¿ technology in production of industrial nanopigments. In the presence of high-surface-area alumosilicate materials, semiconductor nanoparticles known as quantum dots are stabilized against agglomeration during their colloid synthesis, resulting in safe colors. The highly dispersed nanoclays such as tubule halloysite can be employed as biocompatible carriers of quantum dots for the dual labeling of living human cells¿both for dark-field and fluorescence imaging. Therefore, complexation of dyes with nanoclays allows for new, stable, and inexpensive color formulations. es_ES
dc.description.sponsorship Y.L., V.V., A.S., and A.N. thank the Ministry of Education and Science of the Russian Federation (grant 14.Z50.31.0035) for funding this work. Authors are grateful to Mikhail S. Kotelev (Gubkin University) for the TEM micrographs. The human cell labeling work was performed by RF and ER according to the Russian Government Program of Competitive Growth of Kazan Federal University. The authors also thank the Spanish Ministry of Economy and Competitiveness for funding Projects DPI2011-30090-C02-02 and DPI2015-68514-R es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Advanced Functional Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Natual dyes es_ES
dc.subject Nanoclays es_ES
dc.subject Hybrid pigments es_ES
dc.subject Guantum dots es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title Stabilized dye-pigment formulations with platy and tubule nanoclays es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/adfm.201703553 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2011-30090-C02-02/ES/NUEVOS METODOS DE MEJORA DE LA CORRELACION INSTRUMENTAL Y VISUAL DE MATERIALES ESPECIALES E INNOVADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2015-68514-R/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Ministry of Education and Science of the Russian Federation//14.Z50.31.003/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.description.bibliographicCitation Micó-Vicent, B.; Martínez-Verdú, FM.; Novikov, A.; Stavitskaya, A.; Vinokurov, V.; Rozhina, E.; Fakhrullin, R.... (2017). Stabilized dye-pigment formulations with platy and tubule nanoclays. Advanced Functional Materials. 28(27):1-9. https://doi.org/10.1002/adfm.201703553 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/adfm.201703553 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 28 es_ES
dc.description.issue 27 es_ES
dc.relation.pasarela S\345471 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministry of Education and Science of the Russian Federation es_ES
dc.description.references Massos, A., & Turner, A. (2017). Cadmium, lead and bromine in beached microplastics. Environmental Pollution, 227, 139-145. doi:10.1016/j.envpol.2017.04.034 es_ES
dc.description.references Mirjalili, M., Nazarpoor, K., & Karimi, L. (2011). Eco-friendly dyeing of wool using natural dye from weld as co-partner with synthetic dye. Journal of Cleaner Production, 19(9-10), 1045-1051. doi:10.1016/j.jclepro.2011.02.001 es_ES
dc.description.references Ebrahimi, I., & Parvinzadeh Gashti, M. (2016). Extraction of polyphenolic dyes from henna, pomegranate rind, andPterocarya fraxinifoliafor nylon 6 dyeing. Coloration Technology, 132(2), 162-176. doi:10.1111/cote.12204 es_ES
dc.description.references Rather, L. J., Shahid-ul-Islam, Shabbir, M., Bukhari, M. N., Shahid, M., Khan, M. A., & Mohammad, F. (2016). Ecological dyeing of Woolen yarn with Adhatoda vasica natural dye in the presence of biomordants as an alternative copartner to metal mordants. Journal of Environmental Chemical Engineering, 4(3), 3041-3049. doi:10.1016/j.jece.2016.06.019 es_ES
dc.description.references Polette-Niewold, L. A., Manciu, F. S., Torres, B., Alvarado, M., & Chianelli, R. R. (2007). Organic/inorganic complex pigments: Ancient colors Maya Blue. Journal of Inorganic Biochemistry, 101(11-12), 1958-1973. doi:10.1016/j.jinorgbio.2007.07.009 es_ES
dc.description.references Kohno, Y., Inagawa, M., Ikoma, S., Shibata, M., Matsushima, R., Fukuhara, C., … Kobayashi, K. (2011). Stabilization of a hydrophobic natural dye by intercalation into organo-montmorillonite. Applied Clay Science, 54(3-4), 202-205. doi:10.1016/j.clay.2011.09.001 es_ES
dc.description.references E. Baena-Murillo B. Micó-Vicent F. M. Martínez-Verdú Patent WO2013ES70026 20130123 2013 es_ES
dc.description.references Huskić, M., Žigon, M., & Ivanković, M. (2013). Comparison of the properties of clay polymer nanocomposites prepared by montmorillonite modified by silane and by quaternary ammonium salts. Applied Clay Science, 85, 109-115. doi:10.1016/j.clay.2013.09.004 es_ES
dc.description.references Kohno, Y., Asai, S., Shibata, M., Fukuhara, C., Maeda, Y., Tomita, Y., & Kobayashi, K. (2014). Improved photostability of hydrophobic natural dye incorporated in organo-modified hydrotalcite. Journal of Physics and Chemistry of Solids, 75(8), 945-950. doi:10.1016/j.jpcs.2014.04.010 es_ES
dc.description.references Kohno, Y., Haga, E., Yoda, K., Shibata, M., Fukuhara, C., Tomita, Y., … Kobayashi, K. (2014). Adsorption behavior of natural anthocyanin dye on mesoporous silica. Journal of Physics and Chemistry of Solids, 75(1), 48-51. doi:10.1016/j.jpcs.2013.08.007 es_ES
dc.description.references Wang, C.-C., Juang, L.-C., Hsu, T.-C., Lee, C.-K., Lee, J.-F., & Huang, F.-C. (2004). Adsorption of basic dyes onto montmorillonite. Journal of Colloid and Interface Science, 273(1), 80-86. doi:10.1016/j.jcis.2003.12.028 es_ES
dc.description.references Salam, H., Dong, Y., & Davies, I. (2015). Development of biobased polymer/clay nanocomposites. Fillers and Reinforcements for Advanced Nanocomposites, 101-132. doi:10.1016/b978-0-08-100079-3.00006-5 es_ES
dc.description.references Tombácz, E., & Szekeres, M. (2004). Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes. Applied Clay Science, 27(1-2), 75-94. doi:10.1016/j.clay.2004.01.001 es_ES
dc.description.references Durán, J. D. G., Ramos-Tejada, M. M., Arroyo, F. J., & González-Caballero, F. (2000). Rheological and Electrokinetic Properties of Sodium Montmorillonite Suspensions. Journal of Colloid and Interface Science, 229(1), 107-117. doi:10.1006/jcis.2000.6956 es_ES
dc.description.references B. Micó-Vicent F. M. Martínez-Verdú Spain Patent ES2568833 2017 es_ES
dc.description.references Lvov, Y., Wang, W., Zhang, L., & Fakhrullin, R. (2015). Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds. Advanced Materials, 28(6), 1227-1250. doi:10.1002/adma.201502341 es_ES
dc.description.references Liu, M., Jia, Z., Jia, D., & Zhou, C. (2014). Recent advance in research on halloysite nanotubes-polymer nanocomposite. Progress in Polymer Science, 39(8), 1498-1525. doi:10.1016/j.progpolymsci.2014.04.004 es_ES
dc.description.references Du, M., Guo, B., & Jia, D. (2010). Newly emerging applications of halloysite nanotubes: a review. Polymer International, 59(5), 574-582. doi:10.1002/pi.2754 es_ES
dc.description.references Yuan, P., Tan, D., & Annabi-Bergaya, F. (2015). Properties and applications of halloysite nanotubes: recent research advances and future prospects. Applied Clay Science, 112-113, 75-93. doi:10.1016/j.clay.2015.05.001 es_ES
dc.description.references Cavallaro, G., Lazzara, G., & Milioto, S. (2012). Exploiting the Colloidal Stability and Solubilization Ability of Clay Nanotubes/Ionic Surfactant Hybrid Nanomaterials. The Journal of Physical Chemistry C, 116(41), 21932-21938. doi:10.1021/jp307961q es_ES
dc.description.references Micó-Vicent, B., Jordán, J., Martínez-Verdú, F., & Balart, R. (2016). A combination of three surface modifiers for the optimal generation and application of natural hybrid nanopigments in a biodegradable resin. Journal of Materials Science, 52(2), 889-898. doi:10.1007/s10853-016-0384-8 es_ES
dc.description.references R. Price, B. P. Gaber, Y. Lvov, R. (2001). In-vitro release characteristics of tetracycline HCl, khellin and nicotinamide adenine dineculeotide from halloysite; a cylindrical mineral. Journal of Microencapsulation, 18(6), 713-722. doi:10.1080/02652040010019532 es_ES
dc.description.references Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D., & Delvaux, B. (2005). Halloysite clay minerals — a review. Clay Minerals, 40(4), 383-426. doi:10.1180/0009855054040180 es_ES
dc.description.references Lvov, Y. M., Shchukin, D. G., Möhwald, H., & Price, R. R. (2008). Halloysite Clay Nanotubes for Controlled Release of Protective Agents. ACS Nano, 2(5), 814-820. doi:10.1021/nn800259q es_ES
dc.description.references Lvov, Y., & Abdullayev, E. (2013). Functional polymer–clay nanotube composites with sustained release of chemical agents. Progress in Polymer Science, 38(10-11), 1690-1719. doi:10.1016/j.progpolymsci.2013.05.009 es_ES
dc.description.references Abdullayev, E., Joshi, A., Wei, W., Zhao, Y., & Lvov, Y. (2012). Enlargement of Halloysite Clay Nanotube Lumen by Selective Etching of Aluminum Oxide. ACS Nano, 6(8), 7216-7226. doi:10.1021/nn302328x es_ES
dc.description.references Yah, W. O., Takahara, A., & Lvov, Y. M. (2012). Selective Modification of Halloysite Lumen with Octadecylphosphonic Acid: New Inorganic Tubular Micelle. Journal of the American Chemical Society, 134(3), 1853-1859. doi:10.1021/ja210258y es_ES
dc.description.references Cavallaro, G., Lazzara, G., Milioto, S., Parisi, F., & Sanzillo, V. (2013). Modified Halloysite Nanotubes: Nanoarchitectures for Enhancing the Capture of Oils from Vapor and Liquid Phases. ACS Applied Materials & Interfaces, 6(1), 606-612. doi:10.1021/am404693r es_ES
dc.description.references Silvi, S., & Credi, A. (2015). Luminescent sensors based on quantum dot–molecule conjugates. Chemical Society Reviews, 44(13), 4275-4289. doi:10.1039/c4cs00400k es_ES
dc.description.references Jin, T., & Imamura, Y. (2015). Applications of Highly Bright PbS Quantum Dots to Non-Invasive Near-Infrared Fluorescence Imaging in the Second Optical Window. ECS Journal of Solid State Science and Technology, 5(1), R3138-R3145. doi:10.1149/2.0171601jss es_ES
dc.description.references Xu, Z., Yan, J., Xu, C., Cheng, C., Jiang, C., Liu, X., & Qiu, J. (2017). Tunable near-infrared emission and fluorescent lifetime of PbSe quantum dot-doped borosilicate glass. Journal of Alloys and Compounds, 711, 58-63. doi:10.1016/j.jallcom.2017.03.347 es_ES
dc.description.references Petryayeva, E., Algar, W. R., & Medintz, I. L. (2013). Quantum Dots in Bioanalysis: A Review of Applications across Various Platforms for Fluorescence Spectroscopy and Imaging. Applied Spectroscopy, 67(3), 215-252. doi:10.1366/12-06948 es_ES
dc.description.references Shen, H., Bai, X., Wang, A., Wang, H., Qian, L., Yang, Y., … Li, L. S. (2013). High-Efficient Deep-Blue Light-Emitting Diodes by Using High Quality ZnxCd1-xS/ZnS Core/Shell Quantum Dots. Advanced Functional Materials, 24(16), 2367-2373. doi:10.1002/adfm.201302964 es_ES
dc.description.references Li, Q., Jin, X., Yang, Y., Wang, H., Xu, H., Cheng, Y., … Luo, S. (2015). Nd2(S, Se, Te)3Colloidal Quantum Dots: Synthesis, Energy Level Alignment, Charge Transfer Dynamics, and Their Applications to Solar Cells. Advanced Functional Materials, 26(2), 254-266. doi:10.1002/adfm.201503433 es_ES
dc.description.references Liu, Q., Campbell, M. G., Evans, J. S., & Smalyukh, I. I. (2014). Nanocrystals: Orientationally Ordered Colloidal Co-Dispersions of Gold Nanorods and Cellulose Nanocrystals (Adv. Mater. 42/2014). Advanced Materials, 26(42), 7133-7133. doi:10.1002/adma.201470287 es_ES
dc.description.references Benayas, A., Ren, F., Carrasco, E., Marzal, V., del Rosal, B., Gonfa, B. A., … Vetrone, F. (2015). PbS/CdS/ZnS Quantum Dots: A Multifunctional Platform for In Vivo Near-Infrared Low-Dose Fluorescence Imaging. Advanced Functional Materials, 25(42), 6650-6659. doi:10.1002/adfm.201502632 es_ES
dc.description.references Chen, J., Kong, Y., Wang, W., Fang, H., Wo, Y., Zhou, D., … Chen, S. (2016). Direct water-phase synthesis of lead sulfide quantum dots encapsulated by β-lactoglobulin for in vivo second near infrared window imaging with reduced toxicity. Chemical Communications, 52(21), 4025-4028. doi:10.1039/c6cc00099a es_ES
dc.description.references Malgras, V., Tominaka, S., Ryan, J. W., Henzie, J., Takei, T., Ohara, K., & Yamauchi, Y. (2016). Observation of Quantum Confinement in Monodisperse Methylammonium Lead Halide Perovskite Nanocrystals Embedded in Mesoporous Silica. Journal of the American Chemical Society, 138(42), 13874-13881. doi:10.1021/jacs.6b05608 es_ES
dc.description.references Tiwari, A., & Dhoble, S. J. (2016). Stabilization of ZnS nanoparticles by polymeric matrices: syntheses, optical properties and recent applications. RSC Advances, 6(69), 64400-64420. doi:10.1039/c6ra13108e es_ES
dc.description.references Dzamukova, M. R., Naumenko, E. A., Rozhina, E. V., Trifonov, A. A., & Fakhrullin, R. F. (2015). Cell surface engineering with polyelectrolyte-stabilized magnetic nanoparticles: A facile approach for fabrication of artificial multicellular tissue-mimicking clusters. Nano Research, 8(8), 2515-2532. doi:10.1007/s12274-015-0759-1 es_ES
dc.description.references Tai, S., Sun, Y., Squires, J. M., Zhang, H., Oh, W. K., Liang, C.-Z., & Huang, J. (2011). PC3 is a cell line characteristic of prostatic small cell carcinoma. The Prostate, 71(15), 1668-1679. doi:10.1002/pros.21383 es_ES
dc.description.references Konnova, S. A., Sharipova, I. R., Demina, T. A., Osin, Y. N., Yarullina, D. R., Ilinskaya, O. N., … Fakhrullin, R. F. (2013). Biomimetic cell-mediated three-dimensional assembly of halloysite nanotubes. Chemical Communications, 49(39), 4208. doi:10.1039/c2cc38254g es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem