Mostrar el registro sencillo del ítem
dc.contributor.author | Roa, Joan Josep | es_ES |
dc.contributor.author | Suarez, Sebastian | es_ES |
dc.contributor.author | Yang, Huaidong | es_ES |
dc.contributor.author | Fargas, Gemma | es_ES |
dc.contributor.author | Guitar, Agustina | es_ES |
dc.contributor.author | Rayón, Emilio | es_ES |
dc.contributor.author | Green, Itzhak | es_ES |
dc.contributor.author | Mateo, Antonio | es_ES |
dc.date.accessioned | 2020-10-31T04:32:19Z | |
dc.date.available | 2020-10-31T04:32:19Z | |
dc.date.issued | 2019-06 | es_ES |
dc.identifier.issn | 1611-3683 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/153785 | |
dc.description.abstract | [EN] The mechanical behavior of a metastable stainless steel is studied by 8 spherical nanoindentation, as a function of crystallographic orientation 9 of its austenitic grains. The residual imprints are analyzed by electron 10 backscattered diffraction (inverse pole figure, phase and geometrically 11 necessary dislocation maps) and atomic force microscopy. Results showed 12 that austenite grains with the most common crystallographic orientations 13 display similar elasto-to-plastic transition, being the dislocation activity by the 14 Frank-Read source the main deformation mechanism. However, the amount 15 of dislocations generated during indentation testing strongly depends on the 16 crystallographic orientation. No evidence of stress-induced phase transforma- 17 tion is observed. | es_ES |
dc.description.sponsorship | The authors acknowledged the financial support from the Spanish Government through the project MAT2015-70780-c4-3-P. S. S., A. G. acknowledged the EFRE Funds of the European Commission for support of activities within the AME-Lab project. This work was supported by the CREATe-Network Project, Horizon 2020 Program of the European Commission (RISE Project Nr. 644013). J.J. Roa acknowledged the Serra Hunter programme of the Generalitat de Catalunya | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Steel Research International | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Electron backscattered diffraction | es_ES |
dc.subject | Finite element analysis | es_ES |
dc.subject | Metastable stainless steels | es_ES |
dc.subject | Nanoindentation | es_ES |
dc.subject | Spherical indentation | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Influence of the Crystallographic Orientation on the Yield Strength and Deformation Mechanisms of Austenitic Grains in Metastable Stainless Steels Investigated by Spherical Nanoindentation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/srin.201800425 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/644013/EU/Processing and Characterization of Advanced Nano-Composites for Resource-efficient Applications and Technologies/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2015-70780-C4-3-P/ES/COMPUESTOS CERAMICA-METAL Y ALEACIONES REFRACTARIAS DE W PARA SU APLICACION BAJO CONDICIONES DE SERVICIO SEVERAS: DISEÑO MICROESTRUCTURAL Y NUEVAS RUTAS DE PROCESAMIENTO/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.description.bibliographicCitation | Roa, JJ.; Suarez, S.; Yang, H.; Fargas, G.; Guitar, A.; Rayón, E.; Green, I.... (2019). Influence of the Crystallographic Orientation on the Yield Strength and Deformation Mechanisms of Austenitic Grains in Metastable Stainless Steels Investigated by Spherical Nanoindentation. Steel Research International. 90(6):1-8. https://doi.org/10.1002/srin.201800425 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/srin.201800425 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 90 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\384233 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Yan, J., Gao, M., & Zeng, X. (2010). Study on microstructure and mechanical properties of 304 stainless steel joints by TIG, laser and laser-TIG hybrid welding. Optics and Lasers in Engineering, 48(4), 512-517. doi:10.1016/j.optlaseng.2009.08.009 | es_ES |
dc.description.references | Rajasekhara, S., Karjalainen, L. P., Kyröläinen, A., & Ferreira, P. J. (2010). Microstructure evolution in nano/submicron grained AISI 301LN stainless steel. Materials Science and Engineering: A, 527(7-8), 1986-1996. doi:10.1016/j.msea.2009.11.037 | es_ES |
dc.description.references | Vogt, J.-B., Magnin, T., & Foct, J. (1993). EFFECTIVE STRESSES AND MICROSTRUCTURE IN CYCLICALLY DEFORMED 316L AUSTENITIC STAINLESS STEEL: EFFECT OF TEMPERATURE AND NITROGEN CONTENT. Fatigue & Fracture of Engineering Materials & Structures, 16(5), 555-564. doi:10.1111/j.1460-2695.1993.tb00766.x | es_ES |
dc.description.references | Fargas, G., Roa, J. J., & Mateo, A. (2015). Effect of shot peening on metastable austenitic stainless steels. Materials Science and Engineering: A, 641, 290-296. doi:10.1016/j.msea.2015.05.079 | es_ES |
dc.description.references | Fargas, G., Roa, J. J., & Mateo, A. (2016). Influence of pre-existing martensite on the wear resistance of metastable austenitic stainless steels. Wear, 364-365, 40-47. doi:10.1016/j.wear.2016.06.018 | es_ES |
dc.description.references | R.Andersson C.Magnusson E.Schedin in:Proceedings of the Conference of the Second Global Symposium on Innovations in Materials Processing and Manufacturing Sheet Materials TMS NewOrleans February 11–15 2001. | es_ES |
dc.description.references | Lo, K. H., Shek, C. H., & Lai, J. K. L. (2009). Recent developments in stainless steels. Materials Science and Engineering: R: Reports, 65(4-6), 39-104. doi:10.1016/j.mser.2009.03.001 | es_ES |
dc.description.references | Byun, T. ., Lee, E. ., & Hunn, J. . (2003). Plastic deformation in 316LN stainless steel – characterization of deformation microstructures. Journal of Nuclear Materials, 321(1), 29-39. doi:10.1016/s0022-3115(03)00195-8 | es_ES |
dc.description.references | Kruml, T., Polák, J., & Degallaix, S. (2000). Microstructure in 316LN stainless steel fatigued at low temperature. Materials Science and Engineering: A, 293(1-2), 275-280. doi:10.1016/s0921-5093(00)01015-7 | es_ES |
dc.description.references | Taylor, M. D., Choi, K. S., Sun, X., Matlock, D. K., Packard, C. E., Xu, L., & Barlat, F. (2014). Correlations between nanoindentation hardness and macroscopic mechanical properties in DP980 steels. Materials Science and Engineering: A, 597, 431-439. doi:10.1016/j.msea.2013.12.084 | es_ES |
dc.description.references | Furnémont, Q., Kempf, M., Jacques, P. J., Göken, M., & Delannay, F. (2002). On the measurement of the nanohardness of the constitutive phases of TRIP-assisted multiphase steels. Materials Science and Engineering: A, 328(1-2), 26-32. doi:10.1016/s0921-5093(01)01689-6 | es_ES |
dc.description.references | Roa, J. J., Wheeler, J. M., Trifonov, T., Fargas, G., Mateo, A., Michler, J., & Jiménez-Piqué, E. (2015). Deformation of polycrystalline TRIP stainless steel micropillars. Materials Science and Engineering: A, 647, 51-57. doi:10.1016/j.msea.2015.08.082 | es_ES |
dc.description.references | Field, D. P., Trivedi, P. B., Wright, S. I., & Kumar, M. (2005). Analysis of local orientation gradients in deformed single crystals. Ultramicroscopy, 103(1), 33-39. doi:10.1016/j.ultramic.2004.11.016 | es_ES |
dc.description.references | A. C. Fisher‐Cripps Nanoindentation 2004 Springer‐Verlag Press New York USA 9–10 | es_ES |
dc.description.references | U. Müller Applications of Crystallographic Group Theory in Crystal Chemistry 2013 Oxford Science Publications UK ISBN 978‐0‐19‐966995‐0 | es_ES |
dc.description.references | Jackson, R. L., & Green, I. (2005). A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat. Journal of Tribology, 127(2), 343-354. doi:10.1115/1.1866166 | es_ES |
dc.description.references | Moyer, J. M., & Ansell, G. S. (1975). The volume expansion accompanying the martensite transformation in iron-carbon alloys. Metallurgical Transactions A, 6(9), 1785-1791. doi:10.1007/bf02642308 | es_ES |
dc.description.references | Hull, D., & Bacon, D. J. (2001). Dislocations in Other Crystal Structures. Introduction to Dislocations, 102-127. doi:10.1016/b978-075064681-9/50006-7 | es_ES |
dc.description.references | Venables, J. A. (1962). The martensite transformation in stainless steel. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 7(73), 35-44. doi:10.1080/14786436208201856 | es_ES |
dc.description.references | Sapezanskaia, I., Roa, J. J., Fargas, G., Turon-Viñas, M., Trifonov, T., Kouitat Njiwa, R., … Mateo, A. (2017). Deformation mechanisms induced by nanoindentation tests on a metastable austenitic stainless steel: A FIB/SIM investigation. Materials Characterization, 131, 253-260. doi:10.1016/j.matchar.2017.07.019 | es_ES |
dc.description.references | Zaafarani, N., Raabe, D., Roters, F., & Zaefferer, S. (2008). On the origin of deformation-induced rotation patterns below nanoindents. Acta Materialia, 56(1), 31-42. doi:10.1016/j.actamat.2007.09.001 | es_ES |
dc.description.references | Schino, A. D., Barteri, M., & Kenny, J. M. (2002). Journal of Materials Science Letters, 21(9), 751-753. doi:10.1023/a:1015757710546 | es_ES |
dc.description.references | Karjalainen, L. P., Taulavuori, T., Sellman, M., & Kyröläinen, A. (2008). Some Strengthening Methods for Austenitic Stainless Steels. steel research international, 79(6), 404-412. doi:10.1002/srin.200806146 | es_ES |
dc.description.references | Roa, J. J., Fargas, G., Jiménez-Piqué, E., & Mateo, A. (2014). Deformation mechanisms induced under high cycle fatigue tests in a metastable austenitic stainless steel. Materials Science and Engineering: A, 597, 232-236. doi:10.1016/j.msea.2013.12.044 | es_ES |
dc.description.references | Moseson, A. J., Basu, S., & Barsoum, M. W. (2008). Determination of the effective zero point of contact for spherical nanoindentation. Journal of Materials Research, 23(1), 204-209. doi:10.1557/jmr.2008.0012 | es_ES |
dc.description.references | Jiménez-Piqué, E., Gaillard, Y., & Anglada, M. (2007). Instrumented Indentation of Layered Ceramic Materials. Key Engineering Materials, 333, 107-116. doi:10.4028/www.scientific.net/kem.333.107 | es_ES |
dc.description.references | Basu, S., Moseson, A., & Barsoum, M. W. (2006). On the determination of spherical nanoindentation stress–strain curves. Journal of Materials Research, 21(10), 2628-2637. doi:10.1557/jmr.2006.0324 | es_ES |
dc.description.references | Oliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6), 1564-1583. doi:10.1557/jmr.1992.1564 | es_ES |
dc.description.references | Oliver, W. C., & Pharr, G. M. (2004). Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 19(1), 3-20. doi:10.1557/jmr.2004.19.1.3 | es_ES |
dc.description.references | Lawn, B. R. (2005). Indentation of Ceramics with Spheres: A Century after Hertz. Journal of the American Ceramic Society, 81(8), 1977-1994. doi:10.1111/j.1151-2916.1998.tb02580.x | es_ES |
dc.description.references | Roa, J. J., Fargas, G., Mateo, A., & Jiménez-Piqué, E. (2015). Dependence of nanoindentation hardness with crystallographic orientation of austenite grains in metastable stainless steels. Materials Science and Engineering: A, 645, 188-195. doi:10.1016/j.msea.2015.07.096 | es_ES |