- -

Influence of the Crystallographic Orientation on the Yield Strength and Deformation Mechanisms of Austenitic Grains in Metastable Stainless Steels Investigated by Spherical Nanoindentation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of the Crystallographic Orientation on the Yield Strength and Deformation Mechanisms of Austenitic Grains in Metastable Stainless Steels Investigated by Spherical Nanoindentation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Roa, Joan Josep es_ES
dc.contributor.author Suarez, Sebastian es_ES
dc.contributor.author Yang, Huaidong es_ES
dc.contributor.author Fargas, Gemma es_ES
dc.contributor.author Guitar, Agustina es_ES
dc.contributor.author Rayón, Emilio es_ES
dc.contributor.author Green, Itzhak es_ES
dc.contributor.author Mateo, Antonio es_ES
dc.date.accessioned 2020-10-31T04:32:19Z
dc.date.available 2020-10-31T04:32:19Z
dc.date.issued 2019-06 es_ES
dc.identifier.issn 1611-3683 es_ES
dc.identifier.uri http://hdl.handle.net/10251/153785
dc.description.abstract [EN] The mechanical behavior of a metastable stainless steel is studied by 8 spherical nanoindentation, as a function of crystallographic orientation 9 of its austenitic grains. The residual imprints are analyzed by electron 10 backscattered diffraction (inverse pole figure, phase and geometrically 11 necessary dislocation maps) and atomic force microscopy. Results showed 12 that austenite grains with the most common crystallographic orientations 13 display similar elasto-to-plastic transition, being the dislocation activity by the 14 Frank-Read source the main deformation mechanism. However, the amount 15 of dislocations generated during indentation testing strongly depends on the 16 crystallographic orientation. No evidence of stress-induced phase transforma- 17 tion is observed. es_ES
dc.description.sponsorship The authors acknowledged the financial support from the Spanish Government through the project MAT2015-70780-c4-3-P. S. S., A. G. acknowledged the EFRE Funds of the European Commission for support of activities within the AME-Lab project. This work was supported by the CREATe-Network Project, Horizon 2020 Program of the European Commission (RISE Project Nr. 644013). J.J. Roa acknowledged the Serra Hunter programme of the Generalitat de Catalunya es_ES
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Steel Research International es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Electron backscattered diffraction es_ES
dc.subject Finite element analysis es_ES
dc.subject Metastable stainless steels es_ES
dc.subject Nanoindentation es_ES
dc.subject Spherical indentation es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Influence of the Crystallographic Orientation on the Yield Strength and Deformation Mechanisms of Austenitic Grains in Metastable Stainless Steels Investigated by Spherical Nanoindentation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/srin.201800425 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/644013/EU/Processing and Characterization of Advanced Nano-Composites for Resource-efficient Applications and Technologies/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-70780-C4-3-P/ES/COMPUESTOS CERAMICA-METAL Y ALEACIONES REFRACTARIAS DE W PARA SU APLICACION BAJO CONDICIONES DE SERVICIO SEVERAS: DISEÑO MICROESTRUCTURAL Y NUEVAS RUTAS DE PROCESAMIENTO/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.description.bibliographicCitation Roa, JJ.; Suarez, S.; Yang, H.; Fargas, G.; Guitar, A.; Rayón, E.; Green, I.... (2019). Influence of the Crystallographic Orientation on the Yield Strength and Deformation Mechanisms of Austenitic Grains in Metastable Stainless Steels Investigated by Spherical Nanoindentation. Steel Research International. 90(6):1-8. https://doi.org/10.1002/srin.201800425 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/srin.201800425 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 90 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\384233 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Yan, J., Gao, M., & Zeng, X. (2010). Study on microstructure and mechanical properties of 304 stainless steel joints by TIG, laser and laser-TIG hybrid welding. Optics and Lasers in Engineering, 48(4), 512-517. doi:10.1016/j.optlaseng.2009.08.009 es_ES
dc.description.references Rajasekhara, S., Karjalainen, L. P., Kyröläinen, A., & Ferreira, P. J. (2010). Microstructure evolution in nano/submicron grained AISI 301LN stainless steel. Materials Science and Engineering: A, 527(7-8), 1986-1996. doi:10.1016/j.msea.2009.11.037 es_ES
dc.description.references Vogt, J.-B., Magnin, T., & Foct, J. (1993). EFFECTIVE STRESSES AND MICROSTRUCTURE IN CYCLICALLY DEFORMED 316L AUSTENITIC STAINLESS STEEL: EFFECT OF TEMPERATURE AND NITROGEN CONTENT. Fatigue & Fracture of Engineering Materials & Structures, 16(5), 555-564. doi:10.1111/j.1460-2695.1993.tb00766.x es_ES
dc.description.references Fargas, G., Roa, J. J., & Mateo, A. (2015). Effect of shot peening on metastable austenitic stainless steels. Materials Science and Engineering: A, 641, 290-296. doi:10.1016/j.msea.2015.05.079 es_ES
dc.description.references Fargas, G., Roa, J. J., & Mateo, A. (2016). Influence of pre-existing martensite on the wear resistance of metastable austenitic stainless steels. Wear, 364-365, 40-47. doi:10.1016/j.wear.2016.06.018 es_ES
dc.description.references R.Andersson C.Magnusson E.Schedin in:Proceedings of the Conference of the Second Global Symposium on Innovations in Materials Processing and Manufacturing Sheet Materials TMS NewOrleans February 11–15 2001. es_ES
dc.description.references Lo, K. H., Shek, C. H., & Lai, J. K. L. (2009). Recent developments in stainless steels. Materials Science and Engineering: R: Reports, 65(4-6), 39-104. doi:10.1016/j.mser.2009.03.001 es_ES
dc.description.references Byun, T. ., Lee, E. ., & Hunn, J. . (2003). Plastic deformation in 316LN stainless steel – characterization of deformation microstructures. Journal of Nuclear Materials, 321(1), 29-39. doi:10.1016/s0022-3115(03)00195-8 es_ES
dc.description.references Kruml, T., Polák, J., & Degallaix, S. (2000). Microstructure in 316LN stainless steel fatigued at low temperature. Materials Science and Engineering: A, 293(1-2), 275-280. doi:10.1016/s0921-5093(00)01015-7 es_ES
dc.description.references Taylor, M. D., Choi, K. S., Sun, X., Matlock, D. K., Packard, C. E., Xu, L., & Barlat, F. (2014). Correlations between nanoindentation hardness and macroscopic mechanical properties in DP980 steels. Materials Science and Engineering: A, 597, 431-439. doi:10.1016/j.msea.2013.12.084 es_ES
dc.description.references Furnémont, Q., Kempf, M., Jacques, P. J., Göken, M., & Delannay, F. (2002). On the measurement of the nanohardness of the constitutive phases of TRIP-assisted multiphase steels. Materials Science and Engineering: A, 328(1-2), 26-32. doi:10.1016/s0921-5093(01)01689-6 es_ES
dc.description.references Roa, J. J., Wheeler, J. M., Trifonov, T., Fargas, G., Mateo, A., Michler, J., & Jiménez-Piqué, E. (2015). Deformation of polycrystalline TRIP stainless steel micropillars. Materials Science and Engineering: A, 647, 51-57. doi:10.1016/j.msea.2015.08.082 es_ES
dc.description.references Field, D. P., Trivedi, P. B., Wright, S. I., & Kumar, M. (2005). Analysis of local orientation gradients in deformed single crystals. Ultramicroscopy, 103(1), 33-39. doi:10.1016/j.ultramic.2004.11.016 es_ES
dc.description.references A. C. Fisher‐Cripps Nanoindentation 2004 Springer‐Verlag Press New York USA 9–10 es_ES
dc.description.references U. Müller Applications of Crystallographic Group Theory in Crystal Chemistry 2013 Oxford Science Publications UK ISBN 978‐0‐19‐966995‐0 es_ES
dc.description.references Jackson, R. L., & Green, I. (2005). A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat. Journal of Tribology, 127(2), 343-354. doi:10.1115/1.1866166 es_ES
dc.description.references Moyer, J. M., & Ansell, G. S. (1975). The volume expansion accompanying the martensite transformation in iron-carbon alloys. Metallurgical Transactions A, 6(9), 1785-1791. doi:10.1007/bf02642308 es_ES
dc.description.references Hull, D., & Bacon, D. J. (2001). Dislocations in Other Crystal Structures. Introduction to Dislocations, 102-127. doi:10.1016/b978-075064681-9/50006-7 es_ES
dc.description.references Venables, J. A. (1962). The martensite transformation in stainless steel. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 7(73), 35-44. doi:10.1080/14786436208201856 es_ES
dc.description.references Sapezanskaia, I., Roa, J. J., Fargas, G., Turon-Viñas, M., Trifonov, T., Kouitat Njiwa, R., … Mateo, A. (2017). Deformation mechanisms induced by nanoindentation tests on a metastable austenitic stainless steel: A FIB/SIM investigation. Materials Characterization, 131, 253-260. doi:10.1016/j.matchar.2017.07.019 es_ES
dc.description.references Zaafarani, N., Raabe, D., Roters, F., & Zaefferer, S. (2008). On the origin of deformation-induced rotation patterns below nanoindents. Acta Materialia, 56(1), 31-42. doi:10.1016/j.actamat.2007.09.001 es_ES
dc.description.references Schino, A. D., Barteri, M., & Kenny, J. M. (2002). Journal of Materials Science Letters, 21(9), 751-753. doi:10.1023/a:1015757710546 es_ES
dc.description.references Karjalainen, L. P., Taulavuori, T., Sellman, M., & Kyröläinen, A. (2008). Some Strengthening Methods for Austenitic Stainless Steels. steel research international, 79(6), 404-412. doi:10.1002/srin.200806146 es_ES
dc.description.references Roa, J. J., Fargas, G., Jiménez-Piqué, E., & Mateo, A. (2014). Deformation mechanisms induced under high cycle fatigue tests in a metastable austenitic stainless steel. Materials Science and Engineering: A, 597, 232-236. doi:10.1016/j.msea.2013.12.044 es_ES
dc.description.references Moseson, A. J., Basu, S., & Barsoum, M. W. (2008). Determination of the effective zero point of contact for spherical nanoindentation. Journal of Materials Research, 23(1), 204-209. doi:10.1557/jmr.2008.0012 es_ES
dc.description.references Jiménez-Piqué, E., Gaillard, Y., & Anglada, M. (2007). Instrumented Indentation of Layered Ceramic Materials. Key Engineering Materials, 333, 107-116. doi:10.4028/www.scientific.net/kem.333.107 es_ES
dc.description.references Basu, S., Moseson, A., & Barsoum, M. W. (2006). On the determination of spherical nanoindentation stress–strain curves. Journal of Materials Research, 21(10), 2628-2637. doi:10.1557/jmr.2006.0324 es_ES
dc.description.references Oliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6), 1564-1583. doi:10.1557/jmr.1992.1564 es_ES
dc.description.references Oliver, W. C., & Pharr, G. M. (2004). Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 19(1), 3-20. doi:10.1557/jmr.2004.19.1.3 es_ES
dc.description.references Lawn, B. R. (2005). Indentation of Ceramics with Spheres: A Century after Hertz. Journal of the American Ceramic Society, 81(8), 1977-1994. doi:10.1111/j.1151-2916.1998.tb02580.x es_ES
dc.description.references Roa, J. J., Fargas, G., Mateo, A., & Jiménez-Piqué, E. (2015). Dependence of nanoindentation hardness with crystallographic orientation of austenite grains in metastable stainless steels. Materials Science and Engineering: A, 645, 188-195. doi:10.1016/j.msea.2015.07.096 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem