- -

Influence of the Crystallographic Orientation on the Yield Strength and Deformation Mechanisms of Austenitic Grains in Metastable Stainless Steels Investigated by Spherical Nanoindentation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of the Crystallographic Orientation on the Yield Strength and Deformation Mechanisms of Austenitic Grains in Metastable Stainless Steels Investigated by Spherical Nanoindentation

Mostrar el registro completo del ítem

Roa, JJ.; Suarez, S.; Yang, H.; Fargas, G.; Guitar, A.; Rayón, E.; Green, I.... (2019). Influence of the Crystallographic Orientation on the Yield Strength and Deformation Mechanisms of Austenitic Grains in Metastable Stainless Steels Investigated by Spherical Nanoindentation. Steel Research International. 90(6):1-8. https://doi.org/10.1002/srin.201800425

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/153785

Ficheros en el ítem

Metadatos del ítem

Título: Influence of the Crystallographic Orientation on the Yield Strength and Deformation Mechanisms of Austenitic Grains in Metastable Stainless Steels Investigated by Spherical Nanoindentation
Autor: Roa, Joan Josep Suarez, Sebastian Yang, Huaidong Fargas, Gemma Guitar, Agustina Rayón, Emilio Green, Itzhak Mateo, Antonio
Fecha difusión:
Resumen:
[EN] The mechanical behavior of a metastable stainless steel is studied by 8 spherical nanoindentation, as a function of crystallographic orientation 9 of its austenitic grains. The residual imprints are analyzed by ...[+]
Palabras clave: Electron backscattered diffraction , Finite element analysis , Metastable stainless steels , Nanoindentation , Spherical indentation
Derechos de uso: Cerrado
Fuente:
Steel Research International. (issn: 1611-3683 )
DOI: 10.1002/srin.201800425
Editorial:
Wiley
Versión del editor: https://doi.org/10.1002/srin.201800425
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/644013/EU/Processing and Characterization of Advanced Nano-Composites for Resource-efficient Applications and Technologies/
info:eu-repo/grantAgreement/MINECO//MAT2015-70780-C4-3-P/ES/COMPUESTOS CERAMICA-METAL Y ALEACIONES REFRACTARIAS DE W PARA SU APLICACION BAJO CONDICIONES DE SERVICIO SEVERAS: DISEÑO MICROESTRUCTURAL Y NUEVAS RUTAS DE PROCESAMIENTO/
Agradecimientos:
The authors acknowledged the financial support from the Spanish Government through the project MAT2015-70780-c4-3-P. S. S., A. G. acknowledged the EFRE Funds of the European Commission for support of activities within the ...[+]
Tipo: Artículo

References

Yan, J., Gao, M., & Zeng, X. (2010). Study on microstructure and mechanical properties of 304 stainless steel joints by TIG, laser and laser-TIG hybrid welding. Optics and Lasers in Engineering, 48(4), 512-517. doi:10.1016/j.optlaseng.2009.08.009

Rajasekhara, S., Karjalainen, L. P., Kyröläinen, A., & Ferreira, P. J. (2010). Microstructure evolution in nano/submicron grained AISI 301LN stainless steel. Materials Science and Engineering: A, 527(7-8), 1986-1996. doi:10.1016/j.msea.2009.11.037

Vogt, J.-B., Magnin, T., & Foct, J. (1993). EFFECTIVE STRESSES AND MICROSTRUCTURE IN CYCLICALLY DEFORMED 316L AUSTENITIC STAINLESS STEEL: EFFECT OF TEMPERATURE AND NITROGEN CONTENT. Fatigue & Fracture of Engineering Materials & Structures, 16(5), 555-564. doi:10.1111/j.1460-2695.1993.tb00766.x [+]
Yan, J., Gao, M., & Zeng, X. (2010). Study on microstructure and mechanical properties of 304 stainless steel joints by TIG, laser and laser-TIG hybrid welding. Optics and Lasers in Engineering, 48(4), 512-517. doi:10.1016/j.optlaseng.2009.08.009

Rajasekhara, S., Karjalainen, L. P., Kyröläinen, A., & Ferreira, P. J. (2010). Microstructure evolution in nano/submicron grained AISI 301LN stainless steel. Materials Science and Engineering: A, 527(7-8), 1986-1996. doi:10.1016/j.msea.2009.11.037

Vogt, J.-B., Magnin, T., & Foct, J. (1993). EFFECTIVE STRESSES AND MICROSTRUCTURE IN CYCLICALLY DEFORMED 316L AUSTENITIC STAINLESS STEEL: EFFECT OF TEMPERATURE AND NITROGEN CONTENT. Fatigue & Fracture of Engineering Materials & Structures, 16(5), 555-564. doi:10.1111/j.1460-2695.1993.tb00766.x

Fargas, G., Roa, J. J., & Mateo, A. (2015). Effect of shot peening on metastable austenitic stainless steels. Materials Science and Engineering: A, 641, 290-296. doi:10.1016/j.msea.2015.05.079

Fargas, G., Roa, J. J., & Mateo, A. (2016). Influence of pre-existing martensite on the wear resistance of metastable austenitic stainless steels. Wear, 364-365, 40-47. doi:10.1016/j.wear.2016.06.018

R.Andersson C.Magnusson E.Schedin in:Proceedings of the Conference of the Second Global Symposium on Innovations in Materials Processing and Manufacturing Sheet Materials TMS NewOrleans February 11–15 2001.

Lo, K. H., Shek, C. H., & Lai, J. K. L. (2009). Recent developments in stainless steels. Materials Science and Engineering: R: Reports, 65(4-6), 39-104. doi:10.1016/j.mser.2009.03.001

Byun, T. ., Lee, E. ., & Hunn, J. . (2003). Plastic deformation in 316LN stainless steel – characterization of deformation microstructures. Journal of Nuclear Materials, 321(1), 29-39. doi:10.1016/s0022-3115(03)00195-8

Kruml, T., Polák, J., & Degallaix, S. (2000). Microstructure in 316LN stainless steel fatigued at low temperature. Materials Science and Engineering: A, 293(1-2), 275-280. doi:10.1016/s0921-5093(00)01015-7

Taylor, M. D., Choi, K. S., Sun, X., Matlock, D. K., Packard, C. E., Xu, L., & Barlat, F. (2014). Correlations between nanoindentation hardness and macroscopic mechanical properties in DP980 steels. Materials Science and Engineering: A, 597, 431-439. doi:10.1016/j.msea.2013.12.084

Furnémont, Q., Kempf, M., Jacques, P. J., Göken, M., & Delannay, F. (2002). On the measurement of the nanohardness of the constitutive phases of TRIP-assisted multiphase steels. Materials Science and Engineering: A, 328(1-2), 26-32. doi:10.1016/s0921-5093(01)01689-6

Roa, J. J., Wheeler, J. M., Trifonov, T., Fargas, G., Mateo, A., Michler, J., & Jiménez-Piqué, E. (2015). Deformation of polycrystalline TRIP stainless steel micropillars. Materials Science and Engineering: A, 647, 51-57. doi:10.1016/j.msea.2015.08.082

Field, D. P., Trivedi, P. B., Wright, S. I., & Kumar, M. (2005). Analysis of local orientation gradients in deformed single crystals. Ultramicroscopy, 103(1), 33-39. doi:10.1016/j.ultramic.2004.11.016

A. C. Fisher‐Cripps Nanoindentation 2004 Springer‐Verlag Press New York USA 9–10

U. Müller Applications of Crystallographic Group Theory in Crystal Chemistry 2013 Oxford Science Publications UK ISBN 978‐0‐19‐966995‐0

Jackson, R. L., & Green, I. (2005). A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat. Journal of Tribology, 127(2), 343-354. doi:10.1115/1.1866166

Moyer, J. M., & Ansell, G. S. (1975). The volume expansion accompanying the martensite transformation in iron-carbon alloys. Metallurgical Transactions A, 6(9), 1785-1791. doi:10.1007/bf02642308

Hull, D., & Bacon, D. J. (2001). Dislocations in Other Crystal Structures. Introduction to Dislocations, 102-127. doi:10.1016/b978-075064681-9/50006-7

Venables, J. A. (1962). The martensite transformation in stainless steel. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 7(73), 35-44. doi:10.1080/14786436208201856

Sapezanskaia, I., Roa, J. J., Fargas, G., Turon-Viñas, M., Trifonov, T., Kouitat Njiwa, R., … Mateo, A. (2017). Deformation mechanisms induced by nanoindentation tests on a metastable austenitic stainless steel: A FIB/SIM investigation. Materials Characterization, 131, 253-260. doi:10.1016/j.matchar.2017.07.019

Zaafarani, N., Raabe, D., Roters, F., & Zaefferer, S. (2008). On the origin of deformation-induced rotation patterns below nanoindents. Acta Materialia, 56(1), 31-42. doi:10.1016/j.actamat.2007.09.001

Schino, A. D., Barteri, M., & Kenny, J. M. (2002). Journal of Materials Science Letters, 21(9), 751-753. doi:10.1023/a:1015757710546

Karjalainen, L. P., Taulavuori, T., Sellman, M., & Kyröläinen, A. (2008). Some Strengthening Methods for Austenitic Stainless Steels. steel research international, 79(6), 404-412. doi:10.1002/srin.200806146

Roa, J. J., Fargas, G., Jiménez-Piqué, E., & Mateo, A. (2014). Deformation mechanisms induced under high cycle fatigue tests in a metastable austenitic stainless steel. Materials Science and Engineering: A, 597, 232-236. doi:10.1016/j.msea.2013.12.044

Moseson, A. J., Basu, S., & Barsoum, M. W. (2008). Determination of the effective zero point of contact for spherical nanoindentation. Journal of Materials Research, 23(1), 204-209. doi:10.1557/jmr.2008.0012

Jiménez-Piqué, E., Gaillard, Y., & Anglada, M. (2007). Instrumented Indentation of Layered Ceramic Materials. Key Engineering Materials, 333, 107-116. doi:10.4028/www.scientific.net/kem.333.107

Basu, S., Moseson, A., & Barsoum, M. W. (2006). On the determination of spherical nanoindentation stress–strain curves. Journal of Materials Research, 21(10), 2628-2637. doi:10.1557/jmr.2006.0324

Oliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6), 1564-1583. doi:10.1557/jmr.1992.1564

Oliver, W. C., & Pharr, G. M. (2004). Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 19(1), 3-20. doi:10.1557/jmr.2004.19.1.3

Lawn, B. R. (2005). Indentation of Ceramics with Spheres: A Century after Hertz. Journal of the American Ceramic Society, 81(8), 1977-1994. doi:10.1111/j.1151-2916.1998.tb02580.x

Roa, J. J., Fargas, G., Mateo, A., & Jiménez-Piqué, E. (2015). Dependence of nanoindentation hardness with crystallographic orientation of austenite grains in metastable stainless steels. Materials Science and Engineering: A, 645, 188-195. doi:10.1016/j.msea.2015.07.096

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem