- -

Manufacturing and Characterization of Green Composites with Partially Biobased Epoxy Resin and Flaxseed Flour Wastes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Manufacturing and Characterization of Green Composites with Partially Biobased Epoxy Resin and Flaxseed Flour Wastes

Mostrar el registro completo del ítem

Lascano-Aimacaña, DS.; Garcia-Garcia, D.; Rojas-Lema, SP.; Quiles-Carrillo, L.; Balart, R.; Boronat, T. (2020). Manufacturing and Characterization of Green Composites with Partially Biobased Epoxy Resin and Flaxseed Flour Wastes. Applied Sciences. 10(11):1-23. https://doi.org/10.3390/app10113688

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/153834

Ficheros en el ítem

Metadatos del ítem

Título: Manufacturing and Characterization of Green Composites with Partially Biobased Epoxy Resin and Flaxseed Flour Wastes
Autor: Lascano-Aimacaña, Diego Sebastián Garcia-Garcia, Daniel Rojas-Lema, Sandra Paola Quiles-Carrillo, Luis Balart, Rafael Boronat, Teodomiro
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Fecha difusión:
Resumen:
[EN] In the present work, green¿composites from a partially biobased epoxy resin (BioEP) reinforced with lignocellulosic particles, obtained from flax industry by¿products or wastes, have been manufactured by casting. In ...[+]
Palabras clave: Flax seed , Biobased epoxy , Green composite , Waste valorization , Size particle
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app10113688
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/app10113688
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-01-18/
...[+]
info:eu-repo/grantAgreement/UPV//PAID-01-18/
info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F182/
info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/
info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2019%2F132/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F201/
info:eu-repo/grantAgreement/UPV//UPV-FISABIO-2019-A02/
[-]
Agradecimientos:
This research was funded by Spanish Ministry of Science, Innovation, and Universities (MICIU), project numbers MAT2017-84909-C2-2-R. This work was supported by the POLISABIO program grant number (2019-A02). D. Lascano ...[+]
Tipo: Artículo

References

Capezza, A. J., Newson, W. R., Olsson, R. T., Hedenqvist, M. S., & Johansson, E. (2019). Advances in the Use of Protein-Based Materials: Toward Sustainable Naturally Sourced Absorbent Materials. ACS Sustainable Chemistry & Engineering, 7(5), 4532-4547. doi:10.1021/acssuschemeng.8b05400

Babu, R. P., O’Connor, K., & Seeram, R. (2013). Current progress on bio-based polymers and their future trends. Progress in Biomaterials, 2(1), 8. doi:10.1186/2194-0517-2-8

Kim, J.-Y., Lee, H. W., Lee, S. M., Jae, J., & Park, Y.-K. (2019). Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals. Bioresource Technology, 279, 373-384. doi:10.1016/j.biortech.2019.01.055 [+]
Capezza, A. J., Newson, W. R., Olsson, R. T., Hedenqvist, M. S., & Johansson, E. (2019). Advances in the Use of Protein-Based Materials: Toward Sustainable Naturally Sourced Absorbent Materials. ACS Sustainable Chemistry & Engineering, 7(5), 4532-4547. doi:10.1021/acssuschemeng.8b05400

Babu, R. P., O’Connor, K., & Seeram, R. (2013). Current progress on bio-based polymers and their future trends. Progress in Biomaterials, 2(1), 8. doi:10.1186/2194-0517-2-8

Kim, J.-Y., Lee, H. W., Lee, S. M., Jae, J., & Park, Y.-K. (2019). Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals. Bioresource Technology, 279, 373-384. doi:10.1016/j.biortech.2019.01.055

Boronat, T., Fombuena, V., Garcia-Sanoguera, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of a biocomposite based on green polyethylene biopolymer and eggshell. Materials & Design, 68, 177-185. doi:10.1016/j.matdes.2014.12.027

Naghmouchi, I., Mutjé, P., & Boufi, S. (2015). Olive stones flour as reinforcement in polypropylene composites: A step forward in the valorization of the solid waste from the olive oil industry. Industrial Crops and Products, 72, 183-191. doi:10.1016/j.indcrop.2014.11.051

Zaaba, N. F., & Ismail, H. (2019). Thermoplastic/Natural Filler Composites: A Short Review. Journal of Physical Science, 30(Supp.1), 81-99. doi:10.21315/jps2019.30.s1.5

Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940

Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037

Prabu, V. A., Johnson, R. D. J., Amuthakkannan, P., & Manikandan, V. (2017). Usage of industrial wastes as particulate composite for environment management: Hardness, Tensile and Impact studies. Journal of Environmental Chemical Engineering, 5(1), 1289-1301. doi:10.1016/j.jece.2017.02.007

Prabhakar, M. N., Shah, A. U. R., Rao, K. C., & Song, J.-I. (2015). Mechanical and thermal properties of epoxy composites reinforced with waste peanut shell powder as a bio-filler. Fibers and Polymers, 16(5), 1119-1124. doi:10.1007/s12221-015-1119-1

Ikladious, N., Shukry, N., El-Kalyoubi, S., Asaad, J., Mansour, S., Tawfik, S., & Abou-Zeid, R. (2017). Eco-friendly composites based on peanut shell powder / unsaturated polyester resin. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(5), 955-964. doi:10.1177/1464420717722377

Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017

VK, S., & G, B. (2016). Experimental Determination of Mechanical and Physical Properties of Almond Shell Particles Filled Biocomposite in Modified Epoxy Resin. Journal of Material Science & Engineering, 05(03). doi:10.4172/2169-0022.1000246

Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2018). Development and characterization of environmentally friendly composites from poly(butylene succinate) (PBS) and almond shell flour with different compatibilizers. Composites Part B: Engineering, 144, 153-162. doi:10.1016/j.compositesb.2018.02.031

Barczewski, M., Sałasińska, K., & Szulc, J. (2019). Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties. Polymer Testing, 75, 1-11. doi:10.1016/j.polymertesting.2019.01.017

Balart, J. F., Montanes, N., Fombuena, V., Boronat, T., & Sánchez-Nacher, L. (2017). Disintegration in Compost Conditions and Water Uptake of Green Composites from Poly(Lactic Acid) and Hazelnut Shell Flour. Journal of Polymers and the Environment, 26(2), 701-715. doi:10.1007/s10924-017-0988-3

Sharma, H., Singh, I., & Misra, J. P. (2019). Mechanical and thermal behaviour of food waste (Citrus limetta peel) fillers–based novel epoxy composites. Polymers and Polymer Composites, 27(9), 527-535. doi:10.1177/0967391119851012

Garcia-Garcia, D., Quiles-Carrillo, L., Montanes, N., Fombuena, V., & Balart, R. (2017). Manufacturing and Characterization of Composite Fibreboards with Posidonia oceanica Wastes with an Environmentally-Friendly Binder from Epoxy Resin. Materials, 11(1), 35. doi:10.3390/ma11010035

Ferrero, B., Fombuena, V., Fenollar, O., Boronat, T., & Balart, R. (2014). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polymer Composites, 36(8), 1378-1385. doi:10.1002/pc.23042

Koutsomitopoulou, A. F., Bénézet, J. C., Bergeret, A., & Papanicolaou, G. C. (2014). Preparation and characterization of olive pit powder as a filler to PLA-matrix bio-composites. Powder Technology, 255, 10-16. doi:10.1016/j.powtec.2013.10.047

Naghmouchi, I., Espinach, F. X., Mutjé, P., & Boufi, S. (2015). Polypropylene composites based on lignocellulosic fillers: How the filler morphology affects the composite properties. Materials & Design (1980-2015), 65, 454-461. doi:10.1016/j.matdes.2014.09.047

D’Amato, D., Veijonaho, S., & Toppinen, A. (2020). Towards sustainability? Forest-based circular bioeconomy business models in Finnish SMEs. Forest Policy and Economics, 110, 101848. doi:10.1016/j.forpol.2018.12.004

Capezza, A. J., Lundman, M., Olsson, R. T., Newson, W. R., Hedenqvist, M. S., & Johansson, E. (2020). Carboxylated Wheat Gluten Proteins: A Green Solution for Production of Sustainable Superabsorbent Materials. Biomacromolecules, 21(5), 1709-1719. doi:10.1021/acs.biomac.9b01646

Barczewski, M., Mysiukiewicz, O., & Kloziński, A. (2018). Complex modification effect of linseed cake as an agricultural waste filler used in high density polyethylene composites. Iranian Polymer Journal, 27(9), 677-688. doi:10.1007/s13726-018-0644-3

Food and Agriculture Organizationhttp://www.fao.org

Zhang, Z.-S., Wang, L.-J., Li, D., Jiao, S.-S., Chen, X. D., & Mao, Z.-H. (2008). Ultrasound-assisted extraction of oil from flaxseed. Separation and Purification Technology, 62(1), 192-198. doi:10.1016/j.seppur.2008.01.014

Bekhit, A. E.-D. A., Shavandi, A., Jodjaja, T., Birch, J., Teh, S., Mohamed Ahmed, I. A., … Bekhit, A. A. (2018). Flaxseed: Composition, detoxification, utilization, and opportunities. Biocatalysis and Agricultural Biotechnology, 13, 129-152. doi:10.1016/j.bcab.2017.11.017

Zhang, Z.-S., Wang, L.-J., Li, D., Li, S.-J., & Özkan, N. (2011). Characteristics of Flaxseed Oil from Two Different Flax Plants. International Journal of Food Properties, 14(6), 1286-1296. doi:10.1080/10942911003650296

Mannucci, A., Castagna, A., Santin, M., Serra, A., Mele, M., & Ranieri, A. (2019). Quality of flaxseed oil cake under different storage conditions. LWT, 104, 84-90. doi:10.1016/j.lwt.2019.01.035

Wirkijowska, A., Zarzycki, P., Sobota, A., Nawrocka, A., Blicharz-Kania, A., & Andrejko, D. (2020). The possibility of using by-products from the flaxseed industry for functional bread production. LWT, 118, 108860. doi:10.1016/j.lwt.2019.108860

Chan, C. M., Vandi, L.-J., Pratt, S., Halley, P., Richardson, D., Werker, A., & Laycock, B. (2017). Composites of Wood and Biodegradable Thermoplastics: A Review. Polymer Reviews, 58(3), 444-494. doi:10.1080/15583724.2017.1380039

España, J. M., Samper, M. D., Fages, E., Sánchez-Nácher, L., & Balart, R. (2013). Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices. Polymer Composites, 34(3), 376-381. doi:10.1002/pc.22421

Bertomeu, D., García-Sanoguera, D., Fenollar, O., Boronat, T., & Balart, R. (2012). Use of eco-friendly epoxy resins from renewable resources as potential substitutes of petrochemical epoxy resins for ambient cured composites with flax reinforcements. Polymer Composites, 33(5), 683-692. doi:10.1002/pc.22192

Samper, M. D., Fombuena, V., Boronat, T., García-Sanoguera, D., & Balart, R. (2012). Thermal and Mechanical Characterization of Epoxy Resins (ELO and ESO) Cured with Anhydrides. Journal of the American Oil Chemists’ Society. doi:10.1007/s11746-012-2041-y

Fombuena, V., L, S.-N., MD, S., D, J., & R, B. (2012). Study of the Properties of Thermoset Materials Derived from Epoxidized Soybean Oil and Protein Fillers. Journal of the American Oil Chemists’ Society, 90(3), 449-457. doi:10.1007/s11746-012-2171-2

Carbonell-Verdu, A., Bernardi, L., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of environmentally friendly composite matrices from epoxidized cottonseed oil. European Polymer Journal, 63, 1-10. doi:10.1016/j.eurpolymj.2014.11.043

Anusic, A., Resch‐Fauster, K., Mahendran, A. R., & Wuzella, G. (2019). Anhydride Cured Bio‐Based Epoxy Resin: Effect of Moisture on Thermal and Mechanical Properties. Macromolecular Materials and Engineering, 304(7), 1900031. doi:10.1002/mame.201900031

Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031

Fenollar, O., Sanchez-Nacher, L., Garcia-Sanoguera, D., López, J., & Balart, R. (2009). The effect of the curing time and temperature on final properties of flexible PVC with an epoxidized fatty acid ester as natural-based plasticizer. Journal of Materials Science, 44(14), 3702-3711. doi:10.1007/s10853-009-3495-7

Liu, X. Q., Huang, W., Jiang, Y. H., Zhu, J., & Zhang, C. Z. (2012). Preparation of a bio-based epoxy with comparable properties to those of petroleum-based counterparts. Express Polymer Letters, 6(4), 293-298. doi:10.3144/expresspolymlett.2012.32

Niedermann, P., Szebényi, G., & Toldy, A. (2015). Characterization of high glass transition temperature sugar-based epoxy resin composites with jute and carbon fibre reinforcement. Composites Science and Technology, 117, 62-68. doi:10.1016/j.compscitech.2015.06.001

Niedermann, P., Szebényi, G., & Toldy, A. (2014). Effect of Epoxidized Soybean Oil on Curing, Rheological, Mechanical and Thermal Properties of Aromatic and Aliphatic Epoxy Resins. Journal of Polymers and the Environment, 22(4), 525-536. doi:10.1007/s10924-014-0673-8

Wu, Y., Wang, Y., Yang, F., Wang, J., & Wang, X. (2020). Study on the Properties of Transparent Bamboo Prepared by Epoxy Resin Impregnation. Polymers, 12(4), 863. doi:10.3390/polym12040863

Salasinska, K., Mizera, K., Barczewski, M., Borucka, M., Gloc, M., Celiński, M., & Gajek, A. (2019). The influence of degree of fragmentation of Pinus sibirica on flammability, thermal and thermomechanical behavior of the epoxy-composites. Polymer Testing, 79, 106036. doi:10.1016/j.polymertesting.2019.106036

Kumar, R., Kumar, K., & Bhowmik, S. (2018). Mechanical characterization and quantification of tensile, fracture and viscoelastic characteristics of wood filler reinforced epoxy composite. Wood Science and Technology, 52(3), 677-699. doi:10.1007/s00226-018-0995-0

Stabik, J., & Chomiak, M. (2016). Graded epoxy-hard coal composites: Analysis of filler particle distribution in the epoxy matrix. Journal of Composite Materials, 50(26), 3663-3677. doi:10.1177/0021998315623626

Lascano, D., Quiles-Carrillo, L., Torres-Giner, S., Boronat, T., & Montanes, N. (2019). Optimization of the Curing and Post-Curing Conditions for the Manufacturing of Partially Bio-Based Epoxy Resins with Improved Toughness. Polymers, 11(8), 1354. doi:10.3390/polym11081354

Agüero, Á., Lascano, D., Garcia-Sanoguera, D., Fenollar, O., & Torres-Giner, S. (2020). Valorization of Linen Processing By-Products for the Development of Injection-Molded Green Composite Pieces of Polylactide with Improved Performance. Sustainability, 12(2), 652. doi:10.3390/su12020652

Bledzki, A. K., Mamun, A. A., & Volk, J. (2010). Barley husk and coconut shell reinforced polypropylene composites: The effect of fibre physical, chemical and surface properties. Composites Science and Technology, 70(5), 840-846. doi:10.1016/j.compscitech.2010.01.022

Salasinska, K., Barczewski, M., Górny, R., & Kloziński, A. (2017). Evaluation of highly filled epoxy composites modified with walnut shell waste filler. Polymer Bulletin, 75(6), 2511-2528. doi:10.1007/s00289-017-2163-3

Kwon, H.-J., Sunthornvarabhas, J., Park, J.-W., Lee, J.-H., Kim, H.-J., Piyachomkwan, K., … Cho, D. (2014). Tensile properties of kenaf fiber and corn husk flour reinforced poly(lactic acid) hybrid bio-composites: Role of aspect ratio of natural fibers. Composites Part B: Engineering, 56, 232-237. doi:10.1016/j.compositesb.2013.08.003

https://www.novowood.it/en/download-technical-sheet-wpc_39c7.html

https://www.jeluplast.com/wp-content/uploads/2013/09/WPC-PE-H70-800-03.pdf

García-García, D., Carbonell, A., Samper, M. D., García-Sanoguera, D., & Balart, R. (2015). Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Composites Part B: Engineering, 78, 256-265. doi:10.1016/j.compositesb.2015.03.080

Yussuf, A. A., Massoumi, I., & Hassan, A. (2010). Comparison of Polylactic Acid/Kenaf and Polylactic Acid/Rise Husk Composites: The Influence of the Natural Fibers on the Mechanical, Thermal and Biodegradability Properties. Journal of Polymers and the Environment, 18(3), 422-429. doi:10.1007/s10924-010-0185-0

Raju, G. U., & Kumarappa, S. (2012). Experimental Study on Mechanical and Thermal Properties of Epoxy Composites Filled with Agricultural Residue. Polymers from Renewable Resources, 3(3), 117-138. doi:10.1177/204124791200300303

Chen, W.-H., & Kuo, P.-C. (2010). A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy, 35(6), 2580-2586. doi:10.1016/j.energy.2010.02.054

Moriana, R., Vilaplana, F., & Ek, M. (2015). Forest residues as renewable resources for bio-based polymeric materials and bioenergy: chemical composition, structure and thermal properties. Cellulose, 22(5), 3409-3423. doi:10.1007/s10570-015-0738-4

Sengupta, S., Maity, P., Ray, D., & Mukhopadhyay, A. (2013). Stearic acid as coupling agent in fly ash reinforced recycled polypropylene matrix composites: Structural, mechanical, and thermal characterizations. Journal of Applied Polymer Science, 130(3), 1996-2004. doi:10.1002/app.39413

Mysiukiewicz, O., & Barczewski, M. (2018). Utilization of linseed cake as a postagricultural functional filler for poly(lactic acid) green composites. Journal of Applied Polymer Science, 136(10), 47152. doi:10.1002/app.47152

Balart, J. F., García-Sanoguera, D., Balart, R., Boronat, T., & Sánchez-Nacher, L. (2016). Manufacturing and properties of biobased thermoplastic composites from poly(lactid acid) and hazelnut shell wastes. Polymer Composites, 39(3), 848-857. doi:10.1002/pc.24007

Balart, J. F., Fombuena, V., Fenollar, O., Boronat, T., & Sánchez-Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, 86, 168-177. doi:10.1016/j.compositesb.2015.09.063

Liminana, P., Quiles-Carrillo, L., Boronat, T., Balart, R., & Montanes, N. (2018). The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly(Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO). Materials, 11(11), 2179. doi:10.3390/ma11112179

Reixach, R., Puig, J., Méndez, J. A., Gironès, J., Espinach, F. X., Arbat, G., & Mutjé, P. (2015). Orange Wood Fiber Reinforced Polypropylene Composites: Thermal Properties. BioResources, 10(2). doi:10.15376/biores.10.2.2156-2166

Akil, H. M., Cheng, L. W., Mohd Ishak, Z. A., Abu Bakar, A., & Abd Rahman, M. A. (2009). Water absorption study on pultruded jute fibre reinforced unsaturated polyester composites. Composites Science and Technology, 69(11-12), 1942-1948. doi:10.1016/j.compscitech.2009.04.014

Ferrero, B., Boronat, T., Moriana, R., Fenollar, O., & Balart, R. (2013). Green composites based on wheat gluten matrix and posidonia oceanica waste fibers as reinforcements. Polymer Composites, 34(10), 1663-1669. doi:10.1002/pc.22567

Alander, B., Capezza, A. J., Wu, Q., Johansson, E., Olsson, R. T., & Hedenqvist, M. S. (2018). A facile way of making inexpensive rigid and soft protein biofoams with rapid liquid absorption. Industrial Crops and Products, 119, 41-48. doi:10.1016/j.indcrop.2018.03.069

Ben Daly, H., Ben Brahim, H., Hfaied, N., Harchay, M., & Boukhili, R. (2007). Investigation of water absorption in pultruded composites containing fillers and low profile additives. Polymer Composites, 28(3), 355-364. doi:10.1002/pc.20243

UDHAYASANKAR, R., & KATHIKEYAN, B. (2019). PREPARATION AND PROPERTIES OF CASHEW NUT SHELL LIQUID-BASED COMPOSITE REINFORCED BY COCONUT SHELL PARTICLES. Surface Review and Letters, 26(04), 1850174. doi:10.1142/s0218625x18501743

Naghmouchi, I., Mutjé, P., & Boufi, S. (2014). Polyvinyl chloride composites filled with olive stone flour: Mechanical, thermal, and water absorption properties. Journal of Applied Polymer Science, 131(22), n/a-n/a. doi:10.1002/app.41083

Thirmizir, M. Z. A., Ishak, Z. A. M., Taib, R. M., Sudin, R., & Leong, Y. W. (2011). Mechanical, Water Absorption and Dimensional Stability Studies of Kenaf Bast Fibre-Filled Poly(butylene succinate) Composites. Polymer-Plastics Technology and Engineering, 50(4), 339-348. doi:10.1080/03602559.2010.531871

Ishak, Z. A. M., Yow, B. N., Ng, B. L., Khalil, H. P. S. A., & Rozman, H. D. (2001). Hygrothermal aging and tensile behavior of injection-molded rice husk-filled polypropylene composites. Journal of Applied Polymer Science, 81(3), 742-753. doi:10.1002/app.1491

Sapuan, S. M., & Maleque, M. A. (2005). Design and fabrication of natural woven fabric reinforced epoxy composite for household telephone stand. Materials & Design, 26(1), 65-71. doi:10.1016/j.matdes.2004.03.015

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem