- -

Estimación del volumen de agua virtual exportada en productos agrícolas. California como caso de estudio

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Estimación del volumen de agua virtual exportada en productos agrícolas. California como caso de estudio

Mostrar el registro completo del ítem

Nguyen, D.; Nolasco, D.; Baquero, A.; Rosso, D. (2020). Estimación del volumen de agua virtual exportada en productos agrícolas. California como caso de estudio. Ingeniería del agua. 24(4):255-267. https://doi.org/10.4995/ia.2020.13495

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/153894

Ficheros en el ítem

Metadatos del ítem

Título: Estimación del volumen de agua virtual exportada en productos agrícolas. California como caso de estudio
Otro titulo: Estimation of the volume of virtual water exported in agricultural products. California as a case study
Autor: Nguyen, D.T. Nolasco, D. Baquero, A. Rosso, D.
Fecha difusión:
Resumen:
[ES] California es el estado con mayores ingresos por exportación de productos agrícolas en Estados Unidos. En la definición de agua exportada se contabiliza el agua contenida físicamente en los productos agrícolas cultivados ...[+]


[EN] California is the state with the highest income from export of agricultural products in the United States. The total exported water is defined as the physical water contained in crops transported outside a geographic ...[+]
Palabras clave: Virtual water , Climate change , Water stress , Agriculture , Agua exportada , Agua virtual , Huella hídrica , Riego , Estrés hídrico , Cambio climático
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Ingeniería del agua. (issn: 1134-2196 ) (eissn: 1886-4996 )
DOI: 10.4995/ia.2020.13495
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/ia.2020.13495
Agradecimientos:
UCI Water-Energy Nexus Research Center, http://wex.uci.edu/
Tipo: Artículo

Localización


 

References

Alcamo, J., Flörke, M., Märker, M. 2007. Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrological Sciences Journal, 52(2), 247-275. https://doi.org/10.1623/hysj.52.2.247

Aldaya, M.M., Martínez-Santos, P., Llamas, M.R. 2009. Incorporating the Water Footprint and Virtual Water into Policy: Reflections from the Mancha Occidental Region, Spain. Water Resources Management, 24(5), 941-958. https://doi.org/10.1007/s11269-009-9480-8

Allan, J.A. 1993. Fortunately there are substitutes for water otherwise our hydro-political futures would be imposibble. In Priorities for Water Resources Allocation and Management. ODA. [+]
Alcamo, J., Flörke, M., Märker, M. 2007. Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrological Sciences Journal, 52(2), 247-275. https://doi.org/10.1623/hysj.52.2.247

Aldaya, M.M., Martínez-Santos, P., Llamas, M.R. 2009. Incorporating the Water Footprint and Virtual Water into Policy: Reflections from the Mancha Occidental Region, Spain. Water Resources Management, 24(5), 941-958. https://doi.org/10.1007/s11269-009-9480-8

Allan, J.A. 1993. Fortunately there are substitutes for water otherwise our hydro-political futures would be imposibble. In Priorities for Water Resources Allocation and Management. ODA.

Allan, J.A. 1994. Overall perspectives on countries and regions. In Water in the Arab World: Perspectives and Prognoses. Harvard University Press.

Allan, J.A. 1998. Virtual Water: A Strategic Resource Global Solutions to Regional Deficits. Ground Water, 36(4), 545-546. https://doi.org/10.1111/j.1745-6584.1998.tb02825.x

Allan, J.A. 2003. Virtual Water-The Water, Food, and Trade Nexus. Useful Concept or Misleading Metaphor? Water International, 28(1), 106-113. https://doi.org/10.1080/02508060.2003.9724812

California Department of Finance, Demographic Research Unit. 2014. E-1 Population Estimates for Cities, Counties, and the State. January 1, 2015 and 2016. http://www.dof.ca.gov/research/demographic/reports/estimates/e-1/view.php

California Department of Food and Agriculture. 2013. California Agricultural Production Statistics. CDFA > STATISTICS. https://www.cdfa.ca.gov/Statistics/

California Department of Food and Agriculture. 2014. California Agricultural Production Statistics. https://www.cdfa.ca.gov/Statistics/

California Department of Food and Agriculture. 2019. California Agricultural Exports 2018-2019. https://www.cdfa.ca.gov/Statistics/

Chapagain, A.K., Hoekstra, A.Y. 2003. Virtual water flows between nations in relation to tradein livestock and livestock products. In Value of Water, Research Report No. 13 (UNESCO-IHE). http://waterfootprint.org/media/downloads/Report13.pdf

Chen, Z.-M., Chen, G.Q. 2013. Virtual water accounting for the globalized world economy: National water footprint and international virtual water trade. Ecological Indicators, 28, 142-149. https://doi.org/10.1016/j.ecolind.2012.07.024

Dalin, C., Konar, M., Hanasaki, N., Rinaldo, A., Rodriguez-Iturbe, I. 2012. Evolution of the global virtual water trade network. Proceedings of the National Academy of Sciences, 109(16), 5989-5994. https://doi.org/10.1073/pnas.1203176109

Dietzenbacher, E., Velázquez, E. 2007. Analysing Andalusian Virtual Water Trade in an Input-Output Framework. Regional Studies, 41(2), 185-196. https://doi.org/10.1080/00343400600929077

Fulton, J, Cooley, H., Gleick, P. 2012. California's water footprint. http://pacinst.org/app/uploads/2013/02/ca_ftprint_full_report3.pdf

Fulton, Julian, Cooley, H., Gleick, P. H. 2014. Water Footprint Outcomes and Policy Relevance Change with Scale Considered: Evidence from California. Water Resources Management, 28(11), 3637-3649. https://doi.org/10.1007/s11269-014-0692-1

Gleick, P.H., Palaniappan, M. 2010. Peak water limits to freshwater withdrawal and use. Proceedings of the National Academy of Sciences, 107(25), 11155-11162. https://doi.org/10.1073/pnas.1004812107

Guan, D., Hubacek, K. 2007. Assessment of regional trade and virtual water flows in China. Ecological Economics, 61(1), 159-170. https://doi.org/10.1016/j.ecolecon.2006.02.022

Hanasaki, N., Inuzuka, T., Kanae, S., Oki, T. 2010. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. Journal of Hydrology, 384(3-4), 232-244. https://doi.org/10.1016/j.jhydrol.2009.09.028

Hoekstra, A.Y. 2003. Proceedings of the international expert meeting on virtual water trade. http://waterfootprint.org/media/downloads/Report12.pdf

Hoekstra, A.Y., Chapagain, A.K. 2006. Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resources Management, 21(1), 35-48. https://doi.org/10.1007/s11269-006-9039-x

Hoekstra, A.Y. (Ed.). 2011. The water footprint assessment manual: Setting the global standard. Earthscan.

Hoekstra, A.Y., Chapagain, A.K. 2011. Globalization of Water: Sharing the Planet's Freshwater Resources (1 edition). Wiley-Blackwell.

Hoekstra, A.Y, Hung, P.Q. 2002. Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade. Value of Water Research Report Series No. 11. UNESCO-IHE. https://www.utwente.nl/ctw/wem/organisatie/medewerkers/hoekstra/reports/report11.pdf

Huang, G., Hoekstra, A.Y., Krol, M.S., Jägermeyr, J., Galindo, A., Yu, C., Wang, R. 2020. Water-saving agriculture can deliver deep water cuts for China. Resources, Conservation and Recycling, 154, 104578. https://doi.org/10.1016/j.resconrec.2019.104578

International Monetary Fund. (2014, April). World Economic Outlook Database 2014. http://www.imf.org/external/pubs/ft/weo/2014/01/weodata/index.aspx

International Organization for Standardization. 2014. ISO 14046:2014 Environmental management-Water footprint-Principles, requirements and guidelines. https://www.iso.org/obp/ui#iso:std:iso:14046:ed-1:v1:es

Irrigation Training and Research Center. 2003. ETc Table for Irrigation Scheduling and Desing. In California Crop and Soil Evapotranspiration. www.itrc.org/reports/pdf/californiacrop.pdf

Konar, M., Dalin, C., Suweis, S., Hanasaki, N., Rinaldo, A., Rodriguez-Iturbe, I. 2011. Water for food: The global virtual water trade network. Water Resources Research, 47(5), W05520. https://doi.org/10.1029/2010WR010307

Lenzen, M. 2009. Understanding virtual water flows: A multiregion input-output case study of Victoria. Water Resources Research, 45(9), W09416. https://doi.org/10.1029/2008WR007649

Letey, J., Birkle, D. 2003. The Amount of Water We Eat. In California WaterPlan, A Framework for action (University of California Water Resources Center, Vol. 4). http://www.water.ca.gov/pubs/planning/california_water_plan_2005_update__bulletin_160-05_/vol4complete.pdf

Lo, M.-H., Famiglietti, J.S. 2013. Irrigation in California's Central Valley strengthens the southwestern U.S. water cycle. Geophysical Research Letters, 40(2), 301-306. https://doi.org/10.1002/grl.50108

McElrone, A., Choat, B., Gambetta, G., Brodersen, C. 2013. Water uptake and transport in vascular plants. ResearchGate, 4. https://www.researchgate.net/publication/289110328_Water_uptake_and_transport_in_vascular_plants

Mekonnen, M.M., Hoekstra, A.Y. 2011a. National water footprint accounts: The green, blue and grey water footprint of production and consumption. Valoue of Water Research Report Series No. 50 (UNESCO-IHE). https://www.researchgate.net/publication/254859488_National_water_footprint_accounts_The_green_blue_and_grey_water_footprint_of_production_and_consumption

Mekonnen, M.M., Hoekstra, A.Y. 2011b. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci., 15(5), 1577-1600. https://doi.org/10.5194/hess-15-1577-2011

Mekonnen, M.M., Hoekstra, A.Y. 2020. Sustainability of the blue water footprint of crops. Advances in Water Resources, 143, 103679. https://doi.org/10.1016/j.advwatres.2020.103679

Mubako, S., Lahiri, S., Lant, C. 2013. Input-output analysis of virtual water transfers: Case study of California and Illinois. Ecological Economics, 93, 230-238. https://doi.org/10.1016/j.ecolecon.2013.06.005

Nguyen, T.D. 2015. Energy analysis of crop irrigation: Role of water reclamation and water exportation [University of California, Irvine]. https://escholarship.org/uc/item/82c981m3

Oki, T., Kanae, S. 2004. Virtual water trade and world water resources. Water Science and Technology, 49(7), 203-209. https://doi.org/10.2166/wst.2004.0456

Postel, S.L., Daily, G.C., Ehrlich, P.R. 1996. Human Appropriation of Renewable Fresh Water. Science, 271(5250), 785-788. https://doi.org/10.1126/science.271.5250.785

Schubert, H. 2011. The Virtual Water and the Water Footprint Concepts. Achatech. National Academy of Science and Engineering. Germany. https://en.acatech.de/publication/the-virtual-water-and-the-water-footprint-concepts/

Sorooshian, S., AghaKouchak, A., Li, J. 2014. Influence of irrigation on land hydrological processes over California. Journal of Geophysical Research: Atmospheres, 119(23), 2014JD022232. https://doi.org/10.1002/2014JD022232

United Nations General Assembly. 1994. Convention to Combat Desertification in Countries Experiencing Serious Droughts and/or Desertification, Particularly in Africa. http://legal.un.org/avl/ha/unccd/unccd.html

United States Department of Agriculture. 2012. California Agricultural Statistics. 2012 Crop Year. https://www.nass.usda.gov/Statistics_by_State/California/Publications/California_Ag_Statistics/Reports/2012cas-all.pdf

United States Department of Agriculture. 2013. California Agricultural Statistics. 2013 Crop Year. https://www.nass.usda.gov/Statistics_by_State/California/Publications/California_Ag_Statistics/2013cas-all.pdf

United States Department of Agriculture. 2014. NDL/FNIC Food Composition Database Home Page. https://ndb.nal.usda.gov/

Verma, S., Kampman, D.A., van der Zaag, P., Hoekstra, A.Y. 2009. Going against the flow: A critical analysis of inter-state virtual water trade in the context of India's National River Linking Program. Physics and Chemistry of the Earth, Parts A/B/C, 34(4-5), 261-269. https://doi.org/10.1016/j.pce.2008.05.002

Vörösmarty, C.J., Green, P., Salisbury, J., Lammers, R.B. 2000. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science, 289(5477), 284-288. https://doi.org/10.1126/science.289.5477.284

Wei, J., Dirmeyer, P.A., Wisser, D., Bosilovich, M.G., Mocko, D.M. 2013. Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA. Journal of Hydrometeorology, 14(1), 275-289. https://doi.org/10.1175/JHM-D-12-079.1

Wong, A.K., Owens-Viani, L., Steding, A., Gleick, P.H., Haasz, D., Wilkinson, R., Fidell, M., Gomez, S. 1999. Sustainable use of water: California success stories. Pacific Institute for Studies in Development, Environment, and Security. USA. http://pacinst.org/app/uploads/2013/04/ca_water_success_stories1.pdf

Zhao, X., Chen, B., Yang, Z.F. 2009. National water footprint in an input-output framework -A case study of China 2002. Ecological Modelling, 220(2), 245-253. https://doi.org/10.1016/j.ecolmodel.2008.09.016

Zhuo, L., Liu, Y., Yang, H., Hoekstra, A. Y., Liu, W., Cao, X., Wang, M., Wu, P. 2019. Water for maize for pigs for pork: An analysis of inter-provincial trade in China. Water Research, 166, 115074. https://doi.org/10.1016/j.watres.2019.115074

Zimmer, D., Renault, D. 2003. Virtual water in food production and global trade: Review of methodological issues and preliminary results. In Virtual Water Trade: Proceedings of the International Expert Meeting on Virtual Water Trade. http://waterfootprint.org/media/downloads/Report12.pdf

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem