Mostrar el registro sencillo del ítem
dc.contributor.author | Nguyen, D.T. | es_ES |
dc.contributor.author | Nolasco, D. | es_ES |
dc.contributor.author | Baquero, A. | es_ES |
dc.contributor.author | Rosso, D. | es_ES |
dc.coverage.spatial | east=-119.4179324; north=36.778261; name=Unnamed Road, Sanger, CA 93657, Estats Units d'Amèrica | es_ES |
dc.date.accessioned | 2020-11-03T10:27:18Z | |
dc.date.available | 2020-11-03T10:27:18Z | |
dc.date.issued | 2020-10-30 | |
dc.identifier.issn | 1134-2196 | |
dc.identifier.uri | http://hdl.handle.net/10251/153894 | |
dc.description.abstract | [ES] California es el estado con mayores ingresos por exportación de productos agrícolas en Estados Unidos. En la definición de agua exportada se contabiliza el agua contenida físicamente en los productos agrícolas cultivados y transportados fuera de una frontera geográfica, adicionalmente se incluye la evapotranspiración inducida por el riego del cultivo. Como consecuencia de las condiciones climáticas, el agua evapotranspirada se pierde y no está disponible en el ciclo hidrológico local. En el presente estudio, para la estimación del agua exportada se utilizaron datos de los 50 productos agrícolas más exportados desde California (período 2000-2012). Los resultados muestran que, en promedio, el agua exportada en productos agrícolas corresponde a 2.88×1010 m3 año-1, lo que equivale al 68.3% del agua utilizada en riego del cultivo. La mayor parte del agua exportada (67.7%) está representada en la evapotranspiración inducida por el riego del cultivo. El agua contenida físicamente en los productos agrícolas exportados se calculó en 2.32×108 m3 año-1, esto representa menos del 1% del total anual de agua utilizada en California para riego. | es_ES |
dc.description.abstract | [EN] California is the state with the highest income from export of agricultural products in the United States. The total exported water is defined as the physical water contained in crops transported outside a geographic border plus the water lost as induced evapotranspiration as a result of crop irrigation. As a consequence of environmental conditions, the evapotranspiration water is no longer available inside the local hydrologic cycle. In this research, a data set for California’s 50 most exported agricultural commodities (in the period 2000-2012), has been used to quantify exported water. The results show that, on average, the overall exported water in California’s agricultural products was 2.88×1010 m3 yr –1, equivalent to 68.3% of the total water used in agricultural irrigation. The majority of the exported water is in the form of induced evapotranspiration, totaling 67.7% of the annual total water used in irrigation. The physical water content contained in crops was approximately 2.32×108 m3 yr –1, representing less than 1% of the total water used in irrigation and of the induced evapotranspiration. | es_ES |
dc.description.sponsorship | UCI Water-Energy Nexus Research Center, http://wex.uci.edu/ | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Ingeniería del agua | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Virtual water | es_ES |
dc.subject | Climate change | es_ES |
dc.subject | Water stress | es_ES |
dc.subject | Agriculture | es_ES |
dc.subject | Agua exportada | es_ES |
dc.subject | Agua virtual | es_ES |
dc.subject | Huella hídrica | es_ES |
dc.subject | Riego | es_ES |
dc.subject | Estrés hídrico | es_ES |
dc.subject | Cambio climático | es_ES |
dc.title | Estimación del volumen de agua virtual exportada en productos agrícolas. California como caso de estudio | es_ES |
dc.title.alternative | Estimation of the volume of virtual water exported in agricultural products. California as a case study | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/ia.2020.13495 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Nguyen, D.; Nolasco, D.; Baquero, A.; Rosso, D. (2020). Estimación del volumen de agua virtual exportada en productos agrícolas. California como caso de estudio. Ingeniería del agua. 24(4):255-267. https://doi.org/10.4995/ia.2020.13495 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ia.2020.13495 | es_ES |
dc.description.upvformatpinicio | 255 | es_ES |
dc.description.upvformatpfin | 267 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1886-4996 | |
dc.relation.pasarela | OJS\13495 | es_ES |
dc.description.references | Alcamo, J., Flörke, M., Märker, M. 2007. Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrological Sciences Journal, 52(2), 247-275. https://doi.org/10.1623/hysj.52.2.247 | es_ES |
dc.description.references | Aldaya, M.M., Martínez-Santos, P., Llamas, M.R. 2009. Incorporating the Water Footprint and Virtual Water into Policy: Reflections from the Mancha Occidental Region, Spain. Water Resources Management, 24(5), 941-958. https://doi.org/10.1007/s11269-009-9480-8 | es_ES |
dc.description.references | Allan, J.A. 1993. Fortunately there are substitutes for water otherwise our hydro-political futures would be imposibble. In Priorities for Water Resources Allocation and Management. ODA. | es_ES |
dc.description.references | Allan, J.A. 1994. Overall perspectives on countries and regions. In Water in the Arab World: Perspectives and Prognoses. Harvard University Press. | es_ES |
dc.description.references | Allan, J.A. 1998. Virtual Water: A Strategic Resource Global Solutions to Regional Deficits. Ground Water, 36(4), 545-546. https://doi.org/10.1111/j.1745-6584.1998.tb02825.x | es_ES |
dc.description.references | Allan, J.A. 2003. Virtual Water-The Water, Food, and Trade Nexus. Useful Concept or Misleading Metaphor? Water International, 28(1), 106-113. https://doi.org/10.1080/02508060.2003.9724812 | es_ES |
dc.description.references | California Department of Finance, Demographic Research Unit. 2014. E-1 Population Estimates for Cities, Counties, and the State. January 1, 2015 and 2016. http://www.dof.ca.gov/research/demographic/reports/estimates/e-1/view.php | es_ES |
dc.description.references | California Department of Food and Agriculture. 2013. California Agricultural Production Statistics. CDFA > STATISTICS. https://www.cdfa.ca.gov/Statistics/ | es_ES |
dc.description.references | California Department of Food and Agriculture. 2014. California Agricultural Production Statistics. https://www.cdfa.ca.gov/Statistics/ | es_ES |
dc.description.references | California Department of Food and Agriculture. 2019. California Agricultural Exports 2018-2019. https://www.cdfa.ca.gov/Statistics/ | es_ES |
dc.description.references | Chapagain, A.K., Hoekstra, A.Y. 2003. Virtual water flows between nations in relation to tradein livestock and livestock products. In Value of Water, Research Report No. 13 (UNESCO-IHE). http://waterfootprint.org/media/downloads/Report13.pdf | es_ES |
dc.description.references | Chen, Z.-M., Chen, G.Q. 2013. Virtual water accounting for the globalized world economy: National water footprint and international virtual water trade. Ecological Indicators, 28, 142-149. https://doi.org/10.1016/j.ecolind.2012.07.024 | es_ES |
dc.description.references | Dalin, C., Konar, M., Hanasaki, N., Rinaldo, A., Rodriguez-Iturbe, I. 2012. Evolution of the global virtual water trade network. Proceedings of the National Academy of Sciences, 109(16), 5989-5994. https://doi.org/10.1073/pnas.1203176109 | es_ES |
dc.description.references | Dietzenbacher, E., Velázquez, E. 2007. Analysing Andalusian Virtual Water Trade in an Input-Output Framework. Regional Studies, 41(2), 185-196. https://doi.org/10.1080/00343400600929077 | es_ES |
dc.description.references | Fulton, J, Cooley, H., Gleick, P. 2012. California's water footprint. http://pacinst.org/app/uploads/2013/02/ca_ftprint_full_report3.pdf | es_ES |
dc.description.references | Fulton, Julian, Cooley, H., Gleick, P. H. 2014. Water Footprint Outcomes and Policy Relevance Change with Scale Considered: Evidence from California. Water Resources Management, 28(11), 3637-3649. https://doi.org/10.1007/s11269-014-0692-1 | es_ES |
dc.description.references | Gleick, P.H., Palaniappan, M. 2010. Peak water limits to freshwater withdrawal and use. Proceedings of the National Academy of Sciences, 107(25), 11155-11162. https://doi.org/10.1073/pnas.1004812107 | es_ES |
dc.description.references | Guan, D., Hubacek, K. 2007. Assessment of regional trade and virtual water flows in China. Ecological Economics, 61(1), 159-170. https://doi.org/10.1016/j.ecolecon.2006.02.022 | es_ES |
dc.description.references | Hanasaki, N., Inuzuka, T., Kanae, S., Oki, T. 2010. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. Journal of Hydrology, 384(3-4), 232-244. https://doi.org/10.1016/j.jhydrol.2009.09.028 | es_ES |
dc.description.references | Hoekstra, A.Y. 2003. Proceedings of the international expert meeting on virtual water trade. http://waterfootprint.org/media/downloads/Report12.pdf | es_ES |
dc.description.references | Hoekstra, A.Y., Chapagain, A.K. 2006. Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resources Management, 21(1), 35-48. https://doi.org/10.1007/s11269-006-9039-x | es_ES |
dc.description.references | Hoekstra, A.Y. (Ed.). 2011. The water footprint assessment manual: Setting the global standard. Earthscan. | es_ES |
dc.description.references | Hoekstra, A.Y., Chapagain, A.K. 2011. Globalization of Water: Sharing the Planet's Freshwater Resources (1 edition). Wiley-Blackwell. | es_ES |
dc.description.references | Hoekstra, A.Y, Hung, P.Q. 2002. Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade. Value of Water Research Report Series No. 11. UNESCO-IHE. https://www.utwente.nl/ctw/wem/organisatie/medewerkers/hoekstra/reports/report11.pdf | es_ES |
dc.description.references | Huang, G., Hoekstra, A.Y., Krol, M.S., Jägermeyr, J., Galindo, A., Yu, C., Wang, R. 2020. Water-saving agriculture can deliver deep water cuts for China. Resources, Conservation and Recycling, 154, 104578. https://doi.org/10.1016/j.resconrec.2019.104578 | es_ES |
dc.description.references | International Monetary Fund. (2014, April). World Economic Outlook Database 2014. http://www.imf.org/external/pubs/ft/weo/2014/01/weodata/index.aspx | es_ES |
dc.description.references | International Organization for Standardization. 2014. ISO 14046:2014 Environmental management-Water footprint-Principles, requirements and guidelines. https://www.iso.org/obp/ui#iso:std:iso:14046:ed-1:v1:es | es_ES |
dc.description.references | Irrigation Training and Research Center. 2003. ETc Table for Irrigation Scheduling and Desing. In California Crop and Soil Evapotranspiration. www.itrc.org/reports/pdf/californiacrop.pdf | es_ES |
dc.description.references | Konar, M., Dalin, C., Suweis, S., Hanasaki, N., Rinaldo, A., Rodriguez-Iturbe, I. 2011. Water for food: The global virtual water trade network. Water Resources Research, 47(5), W05520. https://doi.org/10.1029/2010WR010307 | es_ES |
dc.description.references | Lenzen, M. 2009. Understanding virtual water flows: A multiregion input-output case study of Victoria. Water Resources Research, 45(9), W09416. https://doi.org/10.1029/2008WR007649 | es_ES |
dc.description.references | Letey, J., Birkle, D. 2003. The Amount of Water We Eat. In California WaterPlan, A Framework for action (University of California Water Resources Center, Vol. 4). http://www.water.ca.gov/pubs/planning/california_water_plan_2005_update__bulletin_160-05_/vol4complete.pdf | es_ES |
dc.description.references | Lo, M.-H., Famiglietti, J.S. 2013. Irrigation in California's Central Valley strengthens the southwestern U.S. water cycle. Geophysical Research Letters, 40(2), 301-306. https://doi.org/10.1002/grl.50108 | es_ES |
dc.description.references | McElrone, A., Choat, B., Gambetta, G., Brodersen, C. 2013. Water uptake and transport in vascular plants. ResearchGate, 4. https://www.researchgate.net/publication/289110328_Water_uptake_and_transport_in_vascular_plants | es_ES |
dc.description.references | Mekonnen, M.M., Hoekstra, A.Y. 2011a. National water footprint accounts: The green, blue and grey water footprint of production and consumption. Valoue of Water Research Report Series No. 50 (UNESCO-IHE). https://www.researchgate.net/publication/254859488_National_water_footprint_accounts_The_green_blue_and_grey_water_footprint_of_production_and_consumption | es_ES |
dc.description.references | Mekonnen, M.M., Hoekstra, A.Y. 2011b. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci., 15(5), 1577-1600. https://doi.org/10.5194/hess-15-1577-2011 | es_ES |
dc.description.references | Mekonnen, M.M., Hoekstra, A.Y. 2020. Sustainability of the blue water footprint of crops. Advances in Water Resources, 143, 103679. https://doi.org/10.1016/j.advwatres.2020.103679 | es_ES |
dc.description.references | Mubako, S., Lahiri, S., Lant, C. 2013. Input-output analysis of virtual water transfers: Case study of California and Illinois. Ecological Economics, 93, 230-238. https://doi.org/10.1016/j.ecolecon.2013.06.005 | es_ES |
dc.description.references | Nguyen, T.D. 2015. Energy analysis of crop irrigation: Role of water reclamation and water exportation [University of California, Irvine]. https://escholarship.org/uc/item/82c981m3 | es_ES |
dc.description.references | Oki, T., Kanae, S. 2004. Virtual water trade and world water resources. Water Science and Technology, 49(7), 203-209. https://doi.org/10.2166/wst.2004.0456 | es_ES |
dc.description.references | Postel, S.L., Daily, G.C., Ehrlich, P.R. 1996. Human Appropriation of Renewable Fresh Water. Science, 271(5250), 785-788. https://doi.org/10.1126/science.271.5250.785 | es_ES |
dc.description.references | Schubert, H. 2011. The Virtual Water and the Water Footprint Concepts. Achatech. National Academy of Science and Engineering. Germany. https://en.acatech.de/publication/the-virtual-water-and-the-water-footprint-concepts/ | es_ES |
dc.description.references | Sorooshian, S., AghaKouchak, A., Li, J. 2014. Influence of irrigation on land hydrological processes over California. Journal of Geophysical Research: Atmospheres, 119(23), 2014JD022232. https://doi.org/10.1002/2014JD022232 | es_ES |
dc.description.references | United Nations General Assembly. 1994. Convention to Combat Desertification in Countries Experiencing Serious Droughts and/or Desertification, Particularly in Africa. http://legal.un.org/avl/ha/unccd/unccd.html | es_ES |
dc.description.references | United States Department of Agriculture. 2012. California Agricultural Statistics. 2012 Crop Year. https://www.nass.usda.gov/Statistics_by_State/California/Publications/California_Ag_Statistics/Reports/2012cas-all.pdf | es_ES |
dc.description.references | United States Department of Agriculture. 2013. California Agricultural Statistics. 2013 Crop Year. https://www.nass.usda.gov/Statistics_by_State/California/Publications/California_Ag_Statistics/2013cas-all.pdf | es_ES |
dc.description.references | United States Department of Agriculture. 2014. NDL/FNIC Food Composition Database Home Page. https://ndb.nal.usda.gov/ | es_ES |
dc.description.references | Verma, S., Kampman, D.A., van der Zaag, P., Hoekstra, A.Y. 2009. Going against the flow: A critical analysis of inter-state virtual water trade in the context of India's National River Linking Program. Physics and Chemistry of the Earth, Parts A/B/C, 34(4-5), 261-269. https://doi.org/10.1016/j.pce.2008.05.002 | es_ES |
dc.description.references | Vörösmarty, C.J., Green, P., Salisbury, J., Lammers, R.B. 2000. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science, 289(5477), 284-288. https://doi.org/10.1126/science.289.5477.284 | es_ES |
dc.description.references | Wei, J., Dirmeyer, P.A., Wisser, D., Bosilovich, M.G., Mocko, D.M. 2013. Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA. Journal of Hydrometeorology, 14(1), 275-289. https://doi.org/10.1175/JHM-D-12-079.1 | es_ES |
dc.description.references | Wong, A.K., Owens-Viani, L., Steding, A., Gleick, P.H., Haasz, D., Wilkinson, R., Fidell, M., Gomez, S. 1999. Sustainable use of water: California success stories. Pacific Institute for Studies in Development, Environment, and Security. USA. http://pacinst.org/app/uploads/2013/04/ca_water_success_stories1.pdf | es_ES |
dc.description.references | Zhao, X., Chen, B., Yang, Z.F. 2009. National water footprint in an input-output framework -A case study of China 2002. Ecological Modelling, 220(2), 245-253. https://doi.org/10.1016/j.ecolmodel.2008.09.016 | es_ES |
dc.description.references | Zhuo, L., Liu, Y., Yang, H., Hoekstra, A. Y., Liu, W., Cao, X., Wang, M., Wu, P. 2019. Water for maize for pigs for pork: An analysis of inter-provincial trade in China. Water Research, 166, 115074. https://doi.org/10.1016/j.watres.2019.115074 | es_ES |
dc.description.references | Zimmer, D., Renault, D. 2003. Virtual water in food production and global trade: Review of methodological issues and preliminary results. In Virtual Water Trade: Proceedings of the International Expert Meeting on Virtual Water Trade. http://waterfootprint.org/media/downloads/Report12.pdf | es_ES |