- -

Estimación del volumen de agua virtual exportada en productos agrícolas. California como caso de estudio

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Estimación del volumen de agua virtual exportada en productos agrícolas. California como caso de estudio

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Nguyen, D.T. es_ES
dc.contributor.author Nolasco, D. es_ES
dc.contributor.author Baquero, A. es_ES
dc.contributor.author Rosso, D. es_ES
dc.coverage.spatial east=-119.4179324; north=36.778261; name=Unnamed Road, Sanger, CA 93657, Estats Units d'Amèrica es_ES
dc.date.accessioned 2020-11-03T10:27:18Z
dc.date.available 2020-11-03T10:27:18Z
dc.date.issued 2020-10-30
dc.identifier.issn 1134-2196
dc.identifier.uri http://hdl.handle.net/10251/153894
dc.description.abstract [ES] California es el estado con mayores ingresos por exportación de productos agrícolas en Estados Unidos. En la definición de agua exportada se contabiliza el agua contenida físicamente en los productos agrícolas cultivados y transportados fuera de una frontera geográfica, adicionalmente se incluye la evapotranspiración inducida por el riego del cultivo. Como consecuencia de las condiciones climáticas, el agua evapotranspirada se pierde y no está disponible en el ciclo hidrológico local. En el presente estudio, para la estimación del agua exportada se utilizaron datos de los 50 productos agrícolas más exportados desde California (período 2000-2012). Los resultados muestran que, en promedio, el agua exportada en productos agrícolas corresponde a 2.88×1010 m3 año-1, lo que equivale al 68.3% del agua utilizada en riego del cultivo. La mayor parte del agua exportada (67.7%) está representada en la evapotranspiración inducida por el riego del cultivo. El agua contenida físicamente en los productos agrícolas exportados se calculó en 2.32×108 m3 año-1, esto representa menos del 1% del total anual de agua utilizada en California para riego. es_ES
dc.description.abstract [EN] California is the state with the highest income from export of agricultural products in the United States. The total exported water is defined as the physical water contained in crops transported outside a geographic border plus the water lost as induced evapotranspiration as a result of crop irrigation. As a consequence of environmental conditions, the evapotranspiration water is no longer available inside the local hydrologic cycle. In this research, a data set for California’s 50 most exported agricultural commodities (in the period 2000-2012), has been used to quantify exported water. The results show that, on average, the overall exported water in California’s agricultural products was 2.88×1010 m3 yr –1, equivalent to 68.3% of the total water used in agricultural irrigation. The majority of the exported water is in the form of induced evapotranspiration, totaling 67.7% of the annual total water used in irrigation. The physical water content contained in crops was approximately 2.32×108 m3 yr –1, representing less than 1% of the total water used in irrigation and of the induced evapotranspiration. es_ES
dc.description.sponsorship UCI Water-Energy Nexus Research Center, http://wex.uci.edu/ es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Ingeniería del agua es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Virtual water es_ES
dc.subject Climate change es_ES
dc.subject Water stress es_ES
dc.subject Agriculture es_ES
dc.subject Agua exportada es_ES
dc.subject Agua virtual es_ES
dc.subject Huella hídrica es_ES
dc.subject Riego es_ES
dc.subject Estrés hídrico es_ES
dc.subject Cambio climático es_ES
dc.title Estimación del volumen de agua virtual exportada en productos agrícolas. California como caso de estudio es_ES
dc.title.alternative Estimation of the volume of virtual water exported in agricultural products. California as a case study es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/ia.2020.13495
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Nguyen, D.; Nolasco, D.; Baquero, A.; Rosso, D. (2020). Estimación del volumen de agua virtual exportada en productos agrícolas. California como caso de estudio. Ingeniería del agua. 24(4):255-267. https://doi.org/10.4995/ia.2020.13495 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/ia.2020.13495 es_ES
dc.description.upvformatpinicio 255 es_ES
dc.description.upvformatpfin 267 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1886-4996
dc.relation.pasarela OJS\13495 es_ES
dc.description.references Alcamo, J., Flörke, M., Märker, M. 2007. Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrological Sciences Journal, 52(2), 247-275. https://doi.org/10.1623/hysj.52.2.247 es_ES
dc.description.references Aldaya, M.M., Martínez-Santos, P., Llamas, M.R. 2009. Incorporating the Water Footprint and Virtual Water into Policy: Reflections from the Mancha Occidental Region, Spain. Water Resources Management, 24(5), 941-958. https://doi.org/10.1007/s11269-009-9480-8 es_ES
dc.description.references Allan, J.A. 1993. Fortunately there are substitutes for water otherwise our hydro-political futures would be imposibble. In Priorities for Water Resources Allocation and Management. ODA. es_ES
dc.description.references Allan, J.A. 1994. Overall perspectives on countries and regions. In Water in the Arab World: Perspectives and Prognoses. Harvard University Press. es_ES
dc.description.references Allan, J.A. 1998. Virtual Water: A Strategic Resource Global Solutions to Regional Deficits. Ground Water, 36(4), 545-546. https://doi.org/10.1111/j.1745-6584.1998.tb02825.x es_ES
dc.description.references Allan, J.A. 2003. Virtual Water-The Water, Food, and Trade Nexus. Useful Concept or Misleading Metaphor? Water International, 28(1), 106-113. https://doi.org/10.1080/02508060.2003.9724812 es_ES
dc.description.references California Department of Finance, Demographic Research Unit. 2014. E-1 Population Estimates for Cities, Counties, and the State. January 1, 2015 and 2016. http://www.dof.ca.gov/research/demographic/reports/estimates/e-1/view.php es_ES
dc.description.references California Department of Food and Agriculture. 2013. California Agricultural Production Statistics. CDFA > STATISTICS. https://www.cdfa.ca.gov/Statistics/ es_ES
dc.description.references California Department of Food and Agriculture. 2014. California Agricultural Production Statistics. https://www.cdfa.ca.gov/Statistics/ es_ES
dc.description.references California Department of Food and Agriculture. 2019. California Agricultural Exports 2018-2019. https://www.cdfa.ca.gov/Statistics/ es_ES
dc.description.references Chapagain, A.K., Hoekstra, A.Y. 2003. Virtual water flows between nations in relation to tradein livestock and livestock products. In Value of Water, Research Report No. 13 (UNESCO-IHE). http://waterfootprint.org/media/downloads/Report13.pdf es_ES
dc.description.references Chen, Z.-M., Chen, G.Q. 2013. Virtual water accounting for the globalized world economy: National water footprint and international virtual water trade. Ecological Indicators, 28, 142-149. https://doi.org/10.1016/j.ecolind.2012.07.024 es_ES
dc.description.references Dalin, C., Konar, M., Hanasaki, N., Rinaldo, A., Rodriguez-Iturbe, I. 2012. Evolution of the global virtual water trade network. Proceedings of the National Academy of Sciences, 109(16), 5989-5994. https://doi.org/10.1073/pnas.1203176109 es_ES
dc.description.references Dietzenbacher, E., Velázquez, E. 2007. Analysing Andalusian Virtual Water Trade in an Input-Output Framework. Regional Studies, 41(2), 185-196. https://doi.org/10.1080/00343400600929077 es_ES
dc.description.references Fulton, J, Cooley, H., Gleick, P. 2012. California's water footprint. http://pacinst.org/app/uploads/2013/02/ca_ftprint_full_report3.pdf es_ES
dc.description.references Fulton, Julian, Cooley, H., Gleick, P. H. 2014. Water Footprint Outcomes and Policy Relevance Change with Scale Considered: Evidence from California. Water Resources Management, 28(11), 3637-3649. https://doi.org/10.1007/s11269-014-0692-1 es_ES
dc.description.references Gleick, P.H., Palaniappan, M. 2010. Peak water limits to freshwater withdrawal and use. Proceedings of the National Academy of Sciences, 107(25), 11155-11162. https://doi.org/10.1073/pnas.1004812107 es_ES
dc.description.references Guan, D., Hubacek, K. 2007. Assessment of regional trade and virtual water flows in China. Ecological Economics, 61(1), 159-170. https://doi.org/10.1016/j.ecolecon.2006.02.022 es_ES
dc.description.references Hanasaki, N., Inuzuka, T., Kanae, S., Oki, T. 2010. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. Journal of Hydrology, 384(3-4), 232-244. https://doi.org/10.1016/j.jhydrol.2009.09.028 es_ES
dc.description.references Hoekstra, A.Y. 2003. Proceedings of the international expert meeting on virtual water trade. http://waterfootprint.org/media/downloads/Report12.pdf es_ES
dc.description.references Hoekstra, A.Y., Chapagain, A.K. 2006. Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resources Management, 21(1), 35-48. https://doi.org/10.1007/s11269-006-9039-x es_ES
dc.description.references Hoekstra, A.Y. (Ed.). 2011. The water footprint assessment manual: Setting the global standard. Earthscan. es_ES
dc.description.references Hoekstra, A.Y., Chapagain, A.K. 2011. Globalization of Water: Sharing the Planet's Freshwater Resources (1 edition). Wiley-Blackwell. es_ES
dc.description.references Hoekstra, A.Y, Hung, P.Q. 2002. Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade. Value of Water Research Report Series No. 11. UNESCO-IHE. https://www.utwente.nl/ctw/wem/organisatie/medewerkers/hoekstra/reports/report11.pdf es_ES
dc.description.references Huang, G., Hoekstra, A.Y., Krol, M.S., Jägermeyr, J., Galindo, A., Yu, C., Wang, R. 2020. Water-saving agriculture can deliver deep water cuts for China. Resources, Conservation and Recycling, 154, 104578. https://doi.org/10.1016/j.resconrec.2019.104578 es_ES
dc.description.references International Monetary Fund. (2014, April). World Economic Outlook Database 2014. http://www.imf.org/external/pubs/ft/weo/2014/01/weodata/index.aspx es_ES
dc.description.references International Organization for Standardization. 2014. ISO 14046:2014 Environmental management-Water footprint-Principles, requirements and guidelines. https://www.iso.org/obp/ui#iso:std:iso:14046:ed-1:v1:es es_ES
dc.description.references Irrigation Training and Research Center. 2003. ETc Table for Irrigation Scheduling and Desing. In California Crop and Soil Evapotranspiration. www.itrc.org/reports/pdf/californiacrop.pdf es_ES
dc.description.references Konar, M., Dalin, C., Suweis, S., Hanasaki, N., Rinaldo, A., Rodriguez-Iturbe, I. 2011. Water for food: The global virtual water trade network. Water Resources Research, 47(5), W05520. https://doi.org/10.1029/2010WR010307 es_ES
dc.description.references Lenzen, M. 2009. Understanding virtual water flows: A multiregion input-output case study of Victoria. Water Resources Research, 45(9), W09416. https://doi.org/10.1029/2008WR007649 es_ES
dc.description.references Letey, J., Birkle, D. 2003. The Amount of Water We Eat. In California WaterPlan, A Framework for action (University of California Water Resources Center, Vol. 4). http://www.water.ca.gov/pubs/planning/california_water_plan_2005_update__bulletin_160-05_/vol4complete.pdf es_ES
dc.description.references Lo, M.-H., Famiglietti, J.S. 2013. Irrigation in California's Central Valley strengthens the southwestern U.S. water cycle. Geophysical Research Letters, 40(2), 301-306. https://doi.org/10.1002/grl.50108 es_ES
dc.description.references McElrone, A., Choat, B., Gambetta, G., Brodersen, C. 2013. Water uptake and transport in vascular plants. ResearchGate, 4. https://www.researchgate.net/publication/289110328_Water_uptake_and_transport_in_vascular_plants es_ES
dc.description.references Mekonnen, M.M., Hoekstra, A.Y. 2011a. National water footprint accounts: The green, blue and grey water footprint of production and consumption. Valoue of Water Research Report Series No. 50 (UNESCO-IHE). https://www.researchgate.net/publication/254859488_National_water_footprint_accounts_The_green_blue_and_grey_water_footprint_of_production_and_consumption es_ES
dc.description.references Mekonnen, M.M., Hoekstra, A.Y. 2011b. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci., 15(5), 1577-1600. https://doi.org/10.5194/hess-15-1577-2011 es_ES
dc.description.references Mekonnen, M.M., Hoekstra, A.Y. 2020. Sustainability of the blue water footprint of crops. Advances in Water Resources, 143, 103679. https://doi.org/10.1016/j.advwatres.2020.103679 es_ES
dc.description.references Mubako, S., Lahiri, S., Lant, C. 2013. Input-output analysis of virtual water transfers: Case study of California and Illinois. Ecological Economics, 93, 230-238. https://doi.org/10.1016/j.ecolecon.2013.06.005 es_ES
dc.description.references Nguyen, T.D. 2015. Energy analysis of crop irrigation: Role of water reclamation and water exportation [University of California, Irvine]. https://escholarship.org/uc/item/82c981m3 es_ES
dc.description.references Oki, T., Kanae, S. 2004. Virtual water trade and world water resources. Water Science and Technology, 49(7), 203-209. https://doi.org/10.2166/wst.2004.0456 es_ES
dc.description.references Postel, S.L., Daily, G.C., Ehrlich, P.R. 1996. Human Appropriation of Renewable Fresh Water. Science, 271(5250), 785-788. https://doi.org/10.1126/science.271.5250.785 es_ES
dc.description.references Schubert, H. 2011. The Virtual Water and the Water Footprint Concepts. Achatech. National Academy of Science and Engineering. Germany. https://en.acatech.de/publication/the-virtual-water-and-the-water-footprint-concepts/ es_ES
dc.description.references Sorooshian, S., AghaKouchak, A., Li, J. 2014. Influence of irrigation on land hydrological processes over California. Journal of Geophysical Research: Atmospheres, 119(23), 2014JD022232. https://doi.org/10.1002/2014JD022232 es_ES
dc.description.references United Nations General Assembly. 1994. Convention to Combat Desertification in Countries Experiencing Serious Droughts and/or Desertification, Particularly in Africa. http://legal.un.org/avl/ha/unccd/unccd.html es_ES
dc.description.references United States Department of Agriculture. 2012. California Agricultural Statistics. 2012 Crop Year. https://www.nass.usda.gov/Statistics_by_State/California/Publications/California_Ag_Statistics/Reports/2012cas-all.pdf es_ES
dc.description.references United States Department of Agriculture. 2013. California Agricultural Statistics. 2013 Crop Year. https://www.nass.usda.gov/Statistics_by_State/California/Publications/California_Ag_Statistics/2013cas-all.pdf es_ES
dc.description.references United States Department of Agriculture. 2014. NDL/FNIC Food Composition Database Home Page. https://ndb.nal.usda.gov/ es_ES
dc.description.references Verma, S., Kampman, D.A., van der Zaag, P., Hoekstra, A.Y. 2009. Going against the flow: A critical analysis of inter-state virtual water trade in the context of India's National River Linking Program. Physics and Chemistry of the Earth, Parts A/B/C, 34(4-5), 261-269. https://doi.org/10.1016/j.pce.2008.05.002 es_ES
dc.description.references Vörösmarty, C.J., Green, P., Salisbury, J., Lammers, R.B. 2000. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science, 289(5477), 284-288. https://doi.org/10.1126/science.289.5477.284 es_ES
dc.description.references Wei, J., Dirmeyer, P.A., Wisser, D., Bosilovich, M.G., Mocko, D.M. 2013. Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA. Journal of Hydrometeorology, 14(1), 275-289. https://doi.org/10.1175/JHM-D-12-079.1 es_ES
dc.description.references Wong, A.K., Owens-Viani, L., Steding, A., Gleick, P.H., Haasz, D., Wilkinson, R., Fidell, M., Gomez, S. 1999. Sustainable use of water: California success stories. Pacific Institute for Studies in Development, Environment, and Security. USA. http://pacinst.org/app/uploads/2013/04/ca_water_success_stories1.pdf es_ES
dc.description.references Zhao, X., Chen, B., Yang, Z.F. 2009. National water footprint in an input-output framework -A case study of China 2002. Ecological Modelling, 220(2), 245-253. https://doi.org/10.1016/j.ecolmodel.2008.09.016 es_ES
dc.description.references Zhuo, L., Liu, Y., Yang, H., Hoekstra, A. Y., Liu, W., Cao, X., Wang, M., Wu, P. 2019. Water for maize for pigs for pork: An analysis of inter-provincial trade in China. Water Research, 166, 115074. https://doi.org/10.1016/j.watres.2019.115074 es_ES
dc.description.references Zimmer, D., Renault, D. 2003. Virtual water in food production and global trade: Review of methodological issues and preliminary results. In Virtual Water Trade: Proceedings of the International Expert Meeting on Virtual Water Trade. http://waterfootprint.org/media/downloads/Report12.pdf es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem