- -

A synthetic biology approach for consistent production of plant-made recombinant polyclonal antibodies against snake venom toxins

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A synthetic biology approach for consistent production of plant-made recombinant polyclonal antibodies against snake venom toxins

Mostrar el registro completo del ítem

Julve Parreño, JM.; Huet, E.; Fernandez-Del-Carmen, A.; Segura, A.; Venturi, M.; Gandia, A.; Pan, W.... (2018). A synthetic biology approach for consistent production of plant-made recombinant polyclonal antibodies against snake venom toxins. Plant Biotechnology Journal. 16(3):727-736. https://doi.org/10.1111/pbi.12823

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/154014

Ficheros en el ítem

Metadatos del ítem

Título: A synthetic biology approach for consistent production of plant-made recombinant polyclonal antibodies against snake venom toxins
Autor: Julve Parreño, Jose Manuel Huet, Estefania Fernandez-del-Carmen, Asun Segura, Alvaro Venturi, Micol Gandia, Antoni Pan, Wei-song Albaladejo, Irene Forment Millet, José Javier Pla, Davinia Wigdorovitz, Andrés Calvete, Juan J. Gutierrez, Carlos Gutiérrez, José María GRANELL RICHART, ANTONIO Orzáez Calatayud, Diego Vicente
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Antivenoms developed from the plasma of hyperimmunized animals are the only effective treatment available against snakebite envenomation but shortage of supply contributes to the high morbidity and mortality toll of ...[+]
Palabras clave: Recombinant polyclonal antibodies , Molecular pharming , Snake antivenoms
Derechos de uso: Reconocimiento (by)
Fuente:
Plant Biotechnology Journal. (issn: 1467-7644 )
DOI: 10.1111/pbi.12823
Editorial:
Blackwell Publishing
Versión del editor: https://doi.org/10.1111/pbi.12823
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//IPT-2011-0720-010000/ES/PRODUCCIÓN DE PROTEINAS TERAPEUTICAS EN BIOFACTORIAS VEGETALES. PROTEBIOV./
info:eu-repo/grantAgreement/MINECO//BIO2013-42193-R/ES/GREEN SWITCHES: DISEÑO DE CIRCUITOS GENETICOS ARTIFICIALES PARA LA PRODUCCION DE PROTEINAS RECOMBINANTES Y EL ENRIQUECIMIENTO NUTRICIONAL DE PLANTAS SOLANACEAS/
info:eu-repo/grantAgreement/MINECO//BIO2016-78601-R/ES/DISEÑO DE CIRCUITOS GENICOS SINTETICOS Y ORTOGONALES PARA PLANTAS MEDIANTE EL USO DE FACTORES PROGRAMABLES DE UNION A DNA BASADOS EN LA ARQUITECTURA CRISPR-CAS9./
info:eu-repo/grantAgreement/MINECO//BFU2013-42833-P/ES/VENOMICA DE ULTIMA GENERACION/
Agradecimientos:
We thank Brian J. Robinson for his careful revision of the manuscript. The work carried out at IBMCP-CSIC received financial support from MINECO and ERDF (project grants IPT-2011-0720-010000, BIO2013-42193-R and BIO2016-78601-R). ...[+]
Tipo: Artículo

References

Arnold, C. (2016). Synthetic biology tackles global antivenom shortage. Nature, 532(7599), 292-292. doi:10.1038/nature.2016.19755

Beerli, R. R., & Rader, C. (2010). Mining human antibody repertoires. mAbs, 2(4), 365-378. doi:10.4161/mabs.12187

Bendandi, M., Marillonnet, S., Kandzia, R., Thieme, F., Nickstadt, A., Herz, S., … Gleba, Y. (2010). Rapid, high-yield production in plants of individualized idiotype vaccines for non-Hodgkin’s lymphoma. Annals of Oncology, 21(12), 2420-2427. doi:10.1093/annonc/mdq256 [+]
Arnold, C. (2016). Synthetic biology tackles global antivenom shortage. Nature, 532(7599), 292-292. doi:10.1038/nature.2016.19755

Beerli, R. R., & Rader, C. (2010). Mining human antibody repertoires. mAbs, 2(4), 365-378. doi:10.4161/mabs.12187

Bendandi, M., Marillonnet, S., Kandzia, R., Thieme, F., Nickstadt, A., Herz, S., … Gleba, Y. (2010). Rapid, high-yield production in plants of individualized idiotype vaccines for non-Hodgkin’s lymphoma. Annals of Oncology, 21(12), 2420-2427. doi:10.1093/annonc/mdq256

Bolaños, R. (1972). Toxicity of Costa Rican Snake Venoms for the White Mouse *. The American Journal of Tropical Medicine and Hygiene, 21(3), 360-363. doi:10.4269/ajtmh.1972.21.360

Elena, S. F., Bedhomme, S., Carrasco, P., Cuevas, J. M., de la Iglesia, F., Lafforgue, G., … Zwart, M. P. (2011). The Evolutionary Genetics of Emerging Plant RNA Viruses. Molecular Plant-Microbe Interactions®, 24(3), 287-293. doi:10.1094/mpmi-09-10-0214

Frauches, T. S., Petretski, J. H., Arnholdt, A. C. V., Lasunskaia, E. B., de Carvalho, E. C. Q., Kipnis, T. L., … Kanashiro, M. M. (2013). Bothropic antivenom based on monoclonal antibodies, is it possible? Toxicon, 71, 49-56. doi:10.1016/j.toxicon.2013.05.005

Gené, J., Roy, A., Rojas, G., Gutiérrez, J., & Cerdas, L. (1989). Comparative study on coagulant, defibrinating, fibrinolytic and fibrinogenolytic activities of Costa Rican crotaline snake venoms and their neutralization by a polyvalent antivenom. Toxicon, 27(8), 841-848. doi:10.1016/0041-0101(89)90096-2

Graham, B. S., & Ambrosino, D. M. (2015). History of passive antibody administration for prevention and treatment of infectious diseases. Current Opinion in HIV and AIDS, 10(3), 129-134. doi:10.1097/coh.0000000000000154

Gutiérrez, J. (2014). Current challenges for confronting the public health problem of snakebite envenoming in Central America. Journal of Venomous Animals and Toxins including Tropical Diseases, 20(1), 7. doi:10.1186/1678-9199-20-7

Gutiérrez, J. M. (2014). Reducing the impact of snakebite envenoming in Latin America and the Caribbean: achievements and challenges ahead. Transactions of The Royal Society of Tropical Medicine and Hygiene, 108(9), 530-537. doi:10.1093/trstmh/tru102

Gutiérrez, J., Gené, J., Rojas, G., & Cerdas, L. (1985). Neutralization of proteolytic and hemorrhagic activities of Costa Rican snake venoms by a polyvalent antivenom. Toxicon, 23(6), 887-893. doi:10.1016/0041-0101(85)90380-0

Gutiérrez, J., Lomonte, B., Chaves, F., Moreno, E., & Cerdas, L. (1986). Pharmacological activities of a toxic phospholipase a isolated from the venom of the snake Bothrops Asper. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 84(1), 159-164. doi:10.1016/0742-8413(86)90183-0

Gutiérrez, J. M., Sanz, L., Escolano, J., Fernández, J., Lomonte, B., Angulo, Y., … Calvete, J. J. (2008). Snake Venomics of the Lesser Antillean Pit VipersBothrops caribbaeusandBothrops lanceolatus: Correlation with Toxicological Activities and Immunoreactivity of a Heterologous Antivenom†. Journal of Proteome Research, 7(10), 4396-4408. doi:10.1021/pr8003826

Gutiérrez, J. M., Sanz, L., Flores-Díaz, M., Figueroa, L., Madrigal, M., Herrera, M., … Calvete, J. J. (2010). Impact of Regional Variation inBothrops asperSnake Venom on the Design of Antivenoms: Integrating Antivenomics and Neutralization Approaches. Journal of Proteome Research, 9(1), 564-577. doi:10.1021/pr9009518

Gutiérrez, J. M., León, G., & Burnouf, T. (2011). Antivenoms for the treatment of snakebite envenomings: The road ahead. Biologicals, 39(3), 129-142. doi:10.1016/j.biologicals.2011.02.005

Harrison, R. A., Hargreaves, A., Wagstaff, S. C., Faragher, B., & Lalloo, D. G. (2009). Snake Envenoming: A Disease of Poverty. PLoS Neglected Tropical Diseases, 3(12), e569. doi:10.1371/journal.pntd.0000569

Julve, J. M., Gandía, A., Fernández-del-Carmen, A., Sarrion-Perdigones, A., Castelijns, B., Granell, A., & Orzaez, D. (2013). A coat-independent superinfection exclusion rapidly imposed in Nicotiana benthamiana cells by tobacco mosaic virus is not prevented by depletion of the movement protein. Plant Molecular Biology, 81(6), 553-564. doi:10.1007/s11103-013-0028-1

Laustsen, A. H. (2016). Snakebites: costing recombinant antivenoms. Nature, 538(7623), 41-41. doi:10.1038/538041e

J. Lavonas, E. (2012). Antivenoms for Snakebite: Design, Function, and Controversies. Current Pharmaceutical Biotechnology, 13(10), 1980-1986. doi:10.2174/138920112802273227

Marillonnet, S., Giritch, A., Gils, M., Kandzia, R., Klimyuk, V., & Gleba, Y. (2004). In planta engineering of viral RNA replicons: Efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proceedings of the National Academy of Sciences, 101(18), 6852-6857. doi:10.1073/pnas.0400149101

Paul, M. J., Thangaraj, H., & Ma, J. K.-C. (2015). Commercialization of new biotechnology: a systematic review of 16 commercial case studies in a novel manufacturing sector. Plant Biotechnology Journal, 13(8), 1209-1220. doi:10.1111/pbi.12426

Pla, D., Gutiérrez, J. M., & Calvete, J. J. (2012). Second generation snake antivenomics: Comparing immunoaffinity and immunodepletion protocols. Toxicon, 60(4), 688-699. doi:10.1016/j.toxicon.2012.04.342

Qiu, X., Wong, G., Audet, J., Bello, A., Fernando, L., Alimonti, J. B., … Kobinger, G. P. (2014). Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature, 514(7520), 47-53. doi:10.1038/nature13777

Ramos, H. R., Junqueira-de-Azevedo, I. de L. M., Novo, J. B., Castro, K., Duarte, C. G., Machado-de-Ávila, R. A., … Ho, P. L. (2016). A Heterologous Multiepitope DNA Prime/Recombinant Protein Boost Immunisation Strategy for the Development of an Antiserum against Micrurus corallinus (Coral Snake) Venom. PLOS Neglected Tropical Diseases, 10(3), e0004484. doi:10.1371/journal.pntd.0004484

Rasmussen, S. K., Næsted, H., Müller, C., Tolstrup, A. B., & Frandsen, T. P. (2012). Recombinant antibody mixtures: Production strategies and cost considerations. Archives of Biochemistry and Biophysics, 526(2), 139-145. doi:10.1016/j.abb.2012.07.001

Sarrion-Perdigones, A., Falconi, E. E., Zandalinas, S. I., Juárez, P., Fernández-del-Carmen, A., Granell, A., & Orzaez, D. (2011). GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules. PLoS ONE, 6(7), e21622. doi:10.1371/journal.pone.0021622

Segura, A., Castillo, M. C., Núñez, V., Yarlequé, A., Gonçalves, L. R. C., Villalta, M., … Gutiérrez, J. M. (2010). Preclinical assessment of the neutralizing capacity of antivenoms produced in six Latin American countries against medically-relevant Bothrops snake venoms. Toxicon, 56(6), 980-989. doi:10.1016/j.toxicon.2010.07.001

Soller, A., & Epstein, H. T. (1965). Biochemical and immunological aspects of the exclusion of lambda by superinfection with T4. Virology, 26(4), 715-726. doi:10.1016/0042-6822(65)90335-1

Stock, R. P., Massougbodji, A., Alagón, A., & Chippaux, J.-P. (2007). Bringing antivenoms to Sub-Saharan Africa. Nature Biotechnology, 25(2), 173-177. doi:10.1038/nbt0207-173

Stoger, E., Sack, M., Fischer, R., & Christou, P. (2002). Plantibodies: applications, advantages and bottlenecks. Current Opinion in Biotechnology, 13(2), 161-166. doi:10.1016/s0958-1669(02)00303-8

SYLLER, J. (2011). Facilitative and antagonistic interactions between plant viruses in mixed infections. Molecular Plant Pathology, 13(2), 204-216. doi:10.1111/j.1364-3703.2011.00734.x

Walwyn, D. R., Huddy, S. M., & Rybicki, E. P. (2014). Techno-Economic Analysis of Horseradish Peroxidase Production Using a Transient Expression System in Nicotiana benthamiana. Applied Biochemistry and Biotechnology, 175(2), 841-854. doi:10.1007/s12010-014-1320-5

Wang, W.-J., Shih, C.-H., & Huang, T.-F. (2004). A novel P-I class metalloproteinase with broad substrate-cleaving activity, agkislysin, from Agkistrodon acutus venom. Biochemical and Biophysical Research Communications, 324(1), 224-230. doi:10.1016/j.bbrc.2004.09.031

Wilensky , U. 1999 NetLogo http://ccl.northwestern.edu/netlogo/

Wilensky , U. 2007 NetLogo Hex Cell Aggregation model http://ccl.northwestern.edu/netlogo/models/HexCellAggregation

Zheng, Y., Zhao, L., Gao, J., & Fei, Z. (2011). iAssembler: a package for de novo assembly of Roche-454/Sanger transcriptome sequences. BMC Bioinformatics, 12(1), 453. doi:10.1186/1471-2105-12-453

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem