- -

A synthetic biology approach for consistent production of plant-made recombinant polyclonal antibodies against snake venom toxins

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A synthetic biology approach for consistent production of plant-made recombinant polyclonal antibodies against snake venom toxins

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Julve Parreño, Jose Manuel es_ES
dc.contributor.author Huet, Estefania es_ES
dc.contributor.author Fernandez-del-Carmen, Asun es_ES
dc.contributor.author Segura, Alvaro es_ES
dc.contributor.author Venturi, Micol es_ES
dc.contributor.author Gandia, Antoni es_ES
dc.contributor.author Pan, Wei-song es_ES
dc.contributor.author Albaladejo, Irene es_ES
dc.contributor.author Forment Millet, José Javier es_ES
dc.contributor.author Pla, Davinia es_ES
dc.contributor.author Wigdorovitz, Andrés es_ES
dc.contributor.author Calvete, Juan J. es_ES
dc.contributor.author Gutierrez, Carlos es_ES
dc.contributor.author Gutiérrez, José María es_ES
dc.contributor.author GRANELL RICHART, ANTONIO es_ES
dc.contributor.author Orzáez Calatayud, Diego Vicente es_ES
dc.date.accessioned 2020-11-04T04:31:21Z
dc.date.available 2020-11-04T04:31:21Z
dc.date.issued 2018-03 es_ES
dc.identifier.issn 1467-7644 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154014
dc.description.abstract [EN] Antivenoms developed from the plasma of hyperimmunized animals are the only effective treatment available against snakebite envenomation but shortage of supply contributes to the high morbidity and mortality toll of this tropical disease. We describe a synthetic biology approach to affordable and cost-effective antivenom production based on plant-made recombinant polyclonal antibodies (termed pluribodies). The strategy takes advantage of virus superinfection exclusion to induce the formation of somatic expression mosaics in agroinfiltrated plants, which enables the expression of complex antibody repertoires in a highly reproducible manner. Pluribodies developed using toxin-binding genetic information captured from peripheral blood lymphocytes of hyperimmunized camels recapitulated the overall binding activity of the immune response. Furthermore, an improved plant-made antivenom (plantivenom) was formulated using an invitro selected pluribody against Bothrops asper snake venom toxins and has been shown to neutralize a wide range of toxin activities and provide protection against lethal venom doses in mice. es_ES
dc.description.sponsorship We thank Brian J. Robinson for his careful revision of the manuscript. The work carried out at IBMCP-CSIC received financial support from MINECO and ERDF (project grants IPT-2011-0720-010000, BIO2013-42193-R and BIO2016-78601-R). Research at IBV-CSIC was supported by grant BFU2013-42833-P from the Spanish Ministry of Economy and Competitiveness, Madrid, Spain. The authors declare no conflict of interest es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Plant Biotechnology Journal es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Recombinant polyclonal antibodies es_ES
dc.subject Molecular pharming es_ES
dc.subject Snake antivenoms es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title A synthetic biology approach for consistent production of plant-made recombinant polyclonal antibodies against snake venom toxins es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/pbi.12823 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//IPT-2011-0720-010000/ES/PRODUCCIÓN DE PROTEINAS TERAPEUTICAS EN BIOFACTORIAS VEGETALES. PROTEBIOV./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2013-42193-R/ES/GREEN SWITCHES: DISEÑO DE CIRCUITOS GENETICOS ARTIFICIALES PARA LA PRODUCCION DE PROTEINAS RECOMBINANTES Y EL ENRIQUECIMIENTO NUTRICIONAL DE PLANTAS SOLANACEAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2016-78601-R/ES/DISEÑO DE CIRCUITOS GENICOS SINTETICOS Y ORTOGONALES PARA PLANTAS MEDIANTE EL USO DE FACTORES PROGRAMABLES DE UNION A DNA BASADOS EN LA ARQUITECTURA CRISPR-CAS9./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2013-42833-P/ES/VENOMICA DE ULTIMA GENERACION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Julve Parreño, JM.; Huet, E.; Fernandez-Del-Carmen, A.; Segura, A.; Venturi, M.; Gandia, A.; Pan, W.... (2018). A synthetic biology approach for consistent production of plant-made recombinant polyclonal antibodies against snake venom toxins. Plant Biotechnology Journal. 16(3):727-736. https://doi.org/10.1111/pbi.12823 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/pbi.12823 es_ES
dc.description.upvformatpinicio 727 es_ES
dc.description.upvformatpfin 736 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 3 es_ES
dc.identifier.pmid 28850773 es_ES
dc.identifier.pmcid PMC5814581 es_ES
dc.relation.pasarela S\356424 es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Arnold, C. (2016). Synthetic biology tackles global antivenom shortage. Nature, 532(7599), 292-292. doi:10.1038/nature.2016.19755 es_ES
dc.description.references Beerli, R. R., & Rader, C. (2010). Mining human antibody repertoires. mAbs, 2(4), 365-378. doi:10.4161/mabs.12187 es_ES
dc.description.references Bendandi, M., Marillonnet, S., Kandzia, R., Thieme, F., Nickstadt, A., Herz, S., … Gleba, Y. (2010). Rapid, high-yield production in plants of individualized idiotype vaccines for non-Hodgkin’s lymphoma. Annals of Oncology, 21(12), 2420-2427. doi:10.1093/annonc/mdq256 es_ES
dc.description.references Bolaños, R. (1972). Toxicity of Costa Rican Snake Venoms for the White Mouse *. The American Journal of Tropical Medicine and Hygiene, 21(3), 360-363. doi:10.4269/ajtmh.1972.21.360 es_ES
dc.description.references Elena, S. F., Bedhomme, S., Carrasco, P., Cuevas, J. M., de la Iglesia, F., Lafforgue, G., … Zwart, M. P. (2011). The Evolutionary Genetics of Emerging Plant RNA Viruses. Molecular Plant-Microbe Interactions®, 24(3), 287-293. doi:10.1094/mpmi-09-10-0214 es_ES
dc.description.references Frauches, T. S., Petretski, J. H., Arnholdt, A. C. V., Lasunskaia, E. B., de Carvalho, E. C. Q., Kipnis, T. L., … Kanashiro, M. M. (2013). Bothropic antivenom based on monoclonal antibodies, is it possible? Toxicon, 71, 49-56. doi:10.1016/j.toxicon.2013.05.005 es_ES
dc.description.references Gené, J., Roy, A., Rojas, G., Gutiérrez, J., & Cerdas, L. (1989). Comparative study on coagulant, defibrinating, fibrinolytic and fibrinogenolytic activities of Costa Rican crotaline snake venoms and their neutralization by a polyvalent antivenom. Toxicon, 27(8), 841-848. doi:10.1016/0041-0101(89)90096-2 es_ES
dc.description.references Graham, B. S., & Ambrosino, D. M. (2015). History of passive antibody administration for prevention and treatment of infectious diseases. Current Opinion in HIV and AIDS, 10(3), 129-134. doi:10.1097/coh.0000000000000154 es_ES
dc.description.references Gutiérrez, J. (2014). Current challenges for confronting the public health problem of snakebite envenoming in Central America. Journal of Venomous Animals and Toxins including Tropical Diseases, 20(1), 7. doi:10.1186/1678-9199-20-7 es_ES
dc.description.references Gutiérrez, J. M. (2014). Reducing the impact of snakebite envenoming in Latin America and the Caribbean: achievements and challenges ahead. Transactions of The Royal Society of Tropical Medicine and Hygiene, 108(9), 530-537. doi:10.1093/trstmh/tru102 es_ES
dc.description.references Gutiérrez, J., Gené, J., Rojas, G., & Cerdas, L. (1985). Neutralization of proteolytic and hemorrhagic activities of Costa Rican snake venoms by a polyvalent antivenom. Toxicon, 23(6), 887-893. doi:10.1016/0041-0101(85)90380-0 es_ES
dc.description.references Gutiérrez, J., Lomonte, B., Chaves, F., Moreno, E., & Cerdas, L. (1986). Pharmacological activities of a toxic phospholipase a isolated from the venom of the snake Bothrops Asper. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 84(1), 159-164. doi:10.1016/0742-8413(86)90183-0 es_ES
dc.description.references Gutiérrez, J. M., Sanz, L., Escolano, J., Fernández, J., Lomonte, B., Angulo, Y., … Calvete, J. J. (2008). Snake Venomics of the Lesser Antillean Pit VipersBothrops caribbaeusandBothrops lanceolatus: Correlation with Toxicological Activities and Immunoreactivity of a Heterologous Antivenom†. Journal of Proteome Research, 7(10), 4396-4408. doi:10.1021/pr8003826 es_ES
dc.description.references Gutiérrez, J. M., Sanz, L., Flores-Díaz, M., Figueroa, L., Madrigal, M., Herrera, M., … Calvete, J. J. (2010). Impact of Regional Variation inBothrops asperSnake Venom on the Design of Antivenoms: Integrating Antivenomics and Neutralization Approaches. Journal of Proteome Research, 9(1), 564-577. doi:10.1021/pr9009518 es_ES
dc.description.references Gutiérrez, J. M., León, G., & Burnouf, T. (2011). Antivenoms for the treatment of snakebite envenomings: The road ahead. Biologicals, 39(3), 129-142. doi:10.1016/j.biologicals.2011.02.005 es_ES
dc.description.references Harrison, R. A., Hargreaves, A., Wagstaff, S. C., Faragher, B., & Lalloo, D. G. (2009). Snake Envenoming: A Disease of Poverty. PLoS Neglected Tropical Diseases, 3(12), e569. doi:10.1371/journal.pntd.0000569 es_ES
dc.description.references Julve, J. M., Gandía, A., Fernández-del-Carmen, A., Sarrion-Perdigones, A., Castelijns, B., Granell, A., & Orzaez, D. (2013). A coat-independent superinfection exclusion rapidly imposed in Nicotiana benthamiana cells by tobacco mosaic virus is not prevented by depletion of the movement protein. Plant Molecular Biology, 81(6), 553-564. doi:10.1007/s11103-013-0028-1 es_ES
dc.description.references Laustsen, A. H. (2016). Snakebites: costing recombinant antivenoms. Nature, 538(7623), 41-41. doi:10.1038/538041e es_ES
dc.description.references J. Lavonas, E. (2012). Antivenoms for Snakebite: Design, Function, and Controversies. Current Pharmaceutical Biotechnology, 13(10), 1980-1986. doi:10.2174/138920112802273227 es_ES
dc.description.references Marillonnet, S., Giritch, A., Gils, M., Kandzia, R., Klimyuk, V., & Gleba, Y. (2004). In planta engineering of viral RNA replicons: Efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proceedings of the National Academy of Sciences, 101(18), 6852-6857. doi:10.1073/pnas.0400149101 es_ES
dc.description.references Paul, M. J., Thangaraj, H., & Ma, J. K.-C. (2015). Commercialization of new biotechnology: a systematic review of 16 commercial case studies in a novel manufacturing sector. Plant Biotechnology Journal, 13(8), 1209-1220. doi:10.1111/pbi.12426 es_ES
dc.description.references Pla, D., Gutiérrez, J. M., & Calvete, J. J. (2012). Second generation snake antivenomics: Comparing immunoaffinity and immunodepletion protocols. Toxicon, 60(4), 688-699. doi:10.1016/j.toxicon.2012.04.342 es_ES
dc.description.references Qiu, X., Wong, G., Audet, J., Bello, A., Fernando, L., Alimonti, J. B., … Kobinger, G. P. (2014). Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature, 514(7520), 47-53. doi:10.1038/nature13777 es_ES
dc.description.references Ramos, H. R., Junqueira-de-Azevedo, I. de L. M., Novo, J. B., Castro, K., Duarte, C. G., Machado-de-Ávila, R. A., … Ho, P. L. (2016). A Heterologous Multiepitope DNA Prime/Recombinant Protein Boost Immunisation Strategy for the Development of an Antiserum against Micrurus corallinus (Coral Snake) Venom. PLOS Neglected Tropical Diseases, 10(3), e0004484. doi:10.1371/journal.pntd.0004484 es_ES
dc.description.references Rasmussen, S. K., Næsted, H., Müller, C., Tolstrup, A. B., & Frandsen, T. P. (2012). Recombinant antibody mixtures: Production strategies and cost considerations. Archives of Biochemistry and Biophysics, 526(2), 139-145. doi:10.1016/j.abb.2012.07.001 es_ES
dc.description.references Sarrion-Perdigones, A., Falconi, E. E., Zandalinas, S. I., Juárez, P., Fernández-del-Carmen, A., Granell, A., & Orzaez, D. (2011). GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules. PLoS ONE, 6(7), e21622. doi:10.1371/journal.pone.0021622 es_ES
dc.description.references Segura, A., Castillo, M. C., Núñez, V., Yarlequé, A., Gonçalves, L. R. C., Villalta, M., … Gutiérrez, J. M. (2010). Preclinical assessment of the neutralizing capacity of antivenoms produced in six Latin American countries against medically-relevant Bothrops snake venoms. Toxicon, 56(6), 980-989. doi:10.1016/j.toxicon.2010.07.001 es_ES
dc.description.references Soller, A., & Epstein, H. T. (1965). Biochemical and immunological aspects of the exclusion of lambda by superinfection with T4. Virology, 26(4), 715-726. doi:10.1016/0042-6822(65)90335-1 es_ES
dc.description.references Stock, R. P., Massougbodji, A., Alagón, A., & Chippaux, J.-P. (2007). Bringing antivenoms to Sub-Saharan Africa. Nature Biotechnology, 25(2), 173-177. doi:10.1038/nbt0207-173 es_ES
dc.description.references Stoger, E., Sack, M., Fischer, R., & Christou, P. (2002). Plantibodies: applications, advantages and bottlenecks. Current Opinion in Biotechnology, 13(2), 161-166. doi:10.1016/s0958-1669(02)00303-8 es_ES
dc.description.references SYLLER, J. (2011). Facilitative and antagonistic interactions between plant viruses in mixed infections. Molecular Plant Pathology, 13(2), 204-216. doi:10.1111/j.1364-3703.2011.00734.x es_ES
dc.description.references Walwyn, D. R., Huddy, S. M., & Rybicki, E. P. (2014). Techno-Economic Analysis of Horseradish Peroxidase Production Using a Transient Expression System in Nicotiana benthamiana. Applied Biochemistry and Biotechnology, 175(2), 841-854. doi:10.1007/s12010-014-1320-5 es_ES
dc.description.references Wang, W.-J., Shih, C.-H., & Huang, T.-F. (2004). A novel P-I class metalloproteinase with broad substrate-cleaving activity, agkislysin, from Agkistrodon acutus venom. Biochemical and Biophysical Research Communications, 324(1), 224-230. doi:10.1016/j.bbrc.2004.09.031 es_ES
dc.description.references Wilensky , U. 1999 NetLogo http://ccl.northwestern.edu/netlogo/ es_ES
dc.description.references Wilensky , U. 2007 NetLogo Hex Cell Aggregation model http://ccl.northwestern.edu/netlogo/models/HexCellAggregation es_ES
dc.description.references Zheng, Y., Zhao, L., Gao, J., & Fei, Z. (2011). iAssembler: a package for de novo assembly of Roche-454/Sanger transcriptome sequences. BMC Bioinformatics, 12(1), 453. doi:10.1186/1471-2105-12-453 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem