- -

Acidity and accessibility studies of desilicated ZSM-5 zeolites in terms of their effectiveness as catalysts in acid-catalyzed cracking processes

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Acidity and accessibility studies of desilicated ZSM-5 zeolites in terms of their effectiveness as catalysts in acid-catalyzed cracking processes

Show full item record

Tarach, KA.; Góra-Marek, K.; Martínez-Triguero, J.; Melian-Cabrera, I. (2017). Acidity and accessibility studies of desilicated ZSM-5 zeolites in terms of their effectiveness as catalysts in acid-catalyzed cracking processes. Catalysis Science & Technology. 7(4):858-873. https://doi.org/10.1039/c6cy02609e

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/154023

Files in this item

Item Metadata

Title: Acidity and accessibility studies of desilicated ZSM-5 zeolites in terms of their effectiveness as catalysts in acid-catalyzed cracking processes
Author: Tarach, Karolina A. Góra-Marek, Kinga Martínez-Triguero, Joaquín Melian-Cabrera, Ignacio
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
[EN] The structural, textural and acidic characteristics of hierarchical ZSM-5 (Si/Al = 18¿32), obtained with two desilication approaches, and the effect of these treatments on the reactivity in various cracking reactions ...[+]
Copyrigths: Reserva de todos los derechos
Source:
Catalysis Science & Technology. (issn: 2044-4753 )
DOI: 10.1039/c6cy02609e
Publisher:
The Royal Society of Chemistry
Publisher version: https://doi.org/10.1039/c6cy02609e
Project ID:
info:eu-repo/grantAgreement/MINECO//CTQ2012-37925-C03-01/ES/CATALIZADORES PARA LA ENERGIA Y EL MEDIOAMBIENTE: ACTIVACION SELECTIVA DE ENLACES S-H Y C-H/
...[+]
info:eu-repo/grantAgreement/MINECO//CTQ2012-37925-C03-01/ES/CATALIZADORES PARA LA ENERGIA Y EL MEDIOAMBIENTE: ACTIVACION SELECTIVA DE ENLACES S-H Y C-H/
info:eu-repo/grantAgreement/NWO//10284/
info:eu-repo/grantAgreement/MINECO//CTQ2015-68951-C3-1-R/ES/TRATAMIENTOS CATALITICOS AVANZADOS PARA LA VALORIZACION DE LA BIOMASA Y LA ELIMINACION DE RESIDUOS ASOCIADOS/
info:eu-repo/grantAgreement/NCN//2014%2F13%2FD%2FST5%2F02761/
info:eu-repo/grantAgreement/NCN//2015%2F18%2FE%2FST4%2F00191/
info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/
[-]
Thanks:
K. T. thanks for financial support from the National Science Centre, Poland, Grant No. 2014/13/D/ST5/02761. I. M.-C. thanks De Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) for financial support, project ...[+]
Type: Artículo

References

Abelló, S., Bonilla, A., & Pérez-Ramírez, J. (2009). Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching. Applied Catalysis A: General, 364(1-2), 191-198. doi:10.1016/j.apcata.2009.05.055

Müller, M., Harvey, G., & Prins, R. (2000). Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiCl4 by 1H, 29Si and 27Al MAS NMR. Microporous and Mesoporous Materials, 34(2), 135-147. doi:10.1016/s1387-1811(99)00167-5

Sadowska, K., Góra-Marek, K., & Datka, J. (2012). Hierarchic zeolites studied by IR spectroscopy: Acid properties of zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. Vibrational Spectroscopy, 63, 418-425. doi:10.1016/j.vibspec.2012.09.007 [+]
Abelló, S., Bonilla, A., & Pérez-Ramírez, J. (2009). Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching. Applied Catalysis A: General, 364(1-2), 191-198. doi:10.1016/j.apcata.2009.05.055

Müller, M., Harvey, G., & Prins, R. (2000). Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiCl4 by 1H, 29Si and 27Al MAS NMR. Microporous and Mesoporous Materials, 34(2), 135-147. doi:10.1016/s1387-1811(99)00167-5

Sadowska, K., Góra-Marek, K., & Datka, J. (2012). Hierarchic zeolites studied by IR spectroscopy: Acid properties of zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. Vibrational Spectroscopy, 63, 418-425. doi:10.1016/j.vibspec.2012.09.007

Pérez-Ramírez, J., Verboekend, D., Bonilla, A., & Abelló, Sã². (2009). Zeolite Catalysts with Tunable Hierarchy Factor by Pore-Growth Moderators. Advanced Functional Materials, 19(24), 3972-3979. doi:10.1002/adfm.200901394

Sadowska, K., Wach, A., Olejniczak, Z., Kuśtrowski, P., & Datka, J. (2013). Hierarchic zeolites: Zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. Microporous and Mesoporous Materials, 167, 82-88. doi:10.1016/j.micromeso.2012.03.045

Serrano, D. P., Aguado, J., & Escola, J. M. (2012). Developing Advanced Catalysts for the Conversion of Polyolefinic Waste Plastics into Fuels and Chemicals. ACS Catalysis, 2(9), 1924-1941. doi:10.1021/cs3003403

Bonilla, A., Baudouin, D., & Pérez-Ramírez, J. (2009). Desilication of ferrierite zeolite for porosity generation and improved effectiveness in polyethylene pyrolysis. Journal of Catalysis, 265(2), 170-180. doi:10.1016/j.jcat.2009.04.022

Serrano, D. P., Aguado, J., Escola, J. M., Rodriguez, J. M., & Peral, A. (2010). Catalytic properties in polyolefin cracking of hierarchical nanocrystalline HZSM-5 samples prepared according to different strategies. Journal of Catalysis, 276(1), 152-160. doi:10.1016/j.jcat.2010.09.008

Aguado, J., Sotelo, J. L., Serrano, D. P., Calles, J. A., & Escola, J. M. (1997). Catalytic Conversion of Polyolefins into Liquid Fuels over MCM-41:  Comparison with ZSM-5 and Amorphous SiO2−Al2O3. Energy & Fuels, 11(6), 1225-1231. doi:10.1021/ef970055v

Kumar, S., Panda, A. K., & Singh, R. K. (2011). A review on tertiary recycling of high-density polyethylene to fuel. Resources, Conservation and Recycling, 55(11), 893-910. doi:10.1016/j.resconrec.2011.05.005

Mordi, R. C., Fields, R., & Dwyer, J. (1994). Thermolysis of low density polyethylene catalysed by zeolites. Journal of Analytical and Applied Pyrolysis, 29(1), 45-55. doi:10.1016/0165-2370(93)00789-p

Castaño, P., Elordi, G., Olazar, M., Aguayo, A. T., Pawelec, B., & Bilbao, J. (2011). Insights into the coke deposited on HZSM-5, Hβ and HY zeolites during the cracking of polyethylene. Applied Catalysis B: Environmental, 104(1-2), 91-100. doi:10.1016/j.apcatb.2011.02.024

Elordi, G., Olazar, M., Lopez, G., Castaño, P., & Bilbao, J. (2011). Role of pore structure in the deactivation of zeolites (HZSM-5, Hβ and HY) by coke in the pyrolysis of polyethylene in a conical spouted bed reactor. Applied Catalysis B: Environmental, 102(1-2), 224-231. doi:10.1016/j.apcatb.2010.12.002

Verboekend, D., & Pérez-Ramírez, J. (2011). Desilication Mechanism Revisited: Highly Mesoporous All-Silica Zeolites Enabled Through Pore-Directing Agents. Chemistry - A European Journal, 17(4), 1137-1147. doi:10.1002/chem.201002589

Cundy, C. S., & Cox, P. A. (2005). The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, 82(1-2), 1-78. doi:10.1016/j.micromeso.2005.02.016

Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0

L. D. Bonifacio , B. V.Lotsch and G. A.Ozin, in Comprehensive Nanoscience and Technology, ed. G. D. Scholes and G. P. Wiederrecht, Academic Press, Amsterdam, 2011, pp. 69–125

Tarach, K. A., Martinez-Triguero, J., Rey, F., & Góra-Marek, K. (2016). Hydrothermal stability and catalytic performance of desilicated highly siliceous zeolites ZSM-5. Journal of Catalysis, 339, 256-269. doi:10.1016/j.jcat.2016.04.023

Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126

Góra-Marek, K., Derewiński, M., Sarv, P., & Datka, J. (2005). IR and NMR studies of mesoporous alumina and related aluminosilicates. Catalysis Today, 101(2), 131-138. doi:10.1016/j.cattod.2005.01.010

Sadowska, K., Góra-Marek, K., & Datka, J. (2013). Accessibility of Acid Sites in Hierarchical Zeolites: Quantitative IR Studies of Pivalonitrile Adsorption. The Journal of Physical Chemistry C, 117(18), 9237-9244. doi:10.1021/jp400400t

Mlekodaj, K., Tarach, K., Datka, J., Góra-Marek, K., & Makowski, W. (2014). Porosity and accessibility of acid sites in desilicated ZSM-5 zeolites studied using adsorption of probe molecules. Microporous and Mesoporous Materials, 183, 54-61. doi:10.1016/j.micromeso.2013.08.051

Corma, A., & Martínez-Triguero, J. (1994). Kinetics of gasoil cracking and catalyst decay on SAPO-37 and USY molecular sieves. Applied Catalysis A: General, 118(2), 153-162. doi:10.1016/0926-860x(94)80310-2

Groen, J. C., Peffer, L. A. A., Moulijn, J. A., & Pérez-Ramírez, J. (2005). Mechanism of Hierarchical Porosity Development in MFI Zeolites by Desilication: The Role of Aluminium as a Pore-Directing Agent. Chemistry - A European Journal, 11(17), 4983-4994. doi:10.1002/chem.200500045

Majda, D., Tarach, K., Góra-Marek, K., Michalik-Zym, A., Napruszewska, B. D., Zimowska, M., & Serwicka, E. M. (2016). Thermoporosimetry of n-alkanes for characterization of mesoporous SBA-15 silicas – Towards deeper understanding the effect of the probe liquid nature. Microporous and Mesoporous Materials, 226, 25-33. doi:10.1016/j.micromeso.2015.12.020

Uytterhoeven, J. B., Christner, L. G., & Hall, W. K. (1965). Studies of the Hydrogen Held by Solids. VIII. The Decationated Zeolites. The Journal of Physical Chemistry, 69(6), 2117-2126. doi:10.1021/j100890a052

Góra-Marek, K., & Datka, J. (2006). IR studies of OH groups in mesoporous aluminosilicates. Applied Catalysis A: General, 302(1), 104-109. doi:10.1016/j.apcata.2005.12.027

H. Knözinger , in Adsorption on Ordered Surfaces of Ionic Solids and Thin Films: Proceedings of the 106th WE-Heraeus Seminar, Bad Honnef, Germany, February 15–18, 1993, ed. H.-J. Freund and E. Umbach, Springer Berlin Heidelberg, Berlin, Heidelberg, 1993, pp. 257–267

Gonzales, N. O., Bell, A. T., & Chakraborty, A. K. (1997). Density Functional Theory Calculations of the Effects of Local Composition and Defect Structure on the Proton Affinity of H−ZSM-5. The Journal of Physical Chemistry B, 101(48), 10058-10064. doi:10.1021/jp971449q

Derewiński, M., Góra-Marek, K., Lázár, K., & Datka, J. (2008). Nature of active sites in the Fe-TON Zeolites: Mössbauer and IR studies. Studies in Surface Science and Catalysis, 865-868. doi:10.1016/s0167-2991(08)80025-0

Groen, J. C., Bach, T., Ziese, U., Paulaime-van Donk, A. M., de Jong, K. P., Moulijn, J. A., & Pérez-Ramírez, J. (2005). Creation of Hollow Zeolite Architectures by Controlled Desilication of Al-Zoned ZSM-5 Crystals. Journal of the American Chemical Society, 127(31), 10792-10793. doi:10.1021/ja052592x

Tarach, K., Góra-Marek, K., Tekla, J., Brylewska, K., Datka, J., Mlekodaj, K., … Rey, F. (2014). Catalytic cracking performance of alkaline-treated zeolite Beta in the terms of acid sites properties and their accessibility. Journal of Catalysis, 312, 46-57. doi:10.1016/j.jcat.2014.01.009

Milina, M., Mitchell, S., Crivelli, P., Cooke, D., & Pérez-Ramírez, J. (2014). Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts. Nature Communications, 5(1). doi:10.1038/ncomms4922

Corma, A., Miguel, P. J., & Orchille´s, A. V. (1994). Influence of hydrocarbon chain length and zeolite structure on the catalyst activity and deactivation for n-alkanes cracking. Applied Catalysis A: General, 117(1), 29-40. doi:10.1016/0926-860x(94)80156-8

XU, B., SIEVERS, C., HONG, S., PRINS, R., & VANBOKHOVEN, J. (2006). Catalytic activity of Brønsted acid sites in zeolites: Intrinsic activity, rate-limiting step, and influence of the local structure of the acid sites. Journal of Catalysis, 244(2), 163-168. doi:10.1016/j.jcat.2006.08.022

Corma, A. (2004). Different process schemes for converting light straight run and fluid catalytic cracking naphthas in a FCC unit for maximum propylene production. Applied Catalysis A: General, 265(2), 195-206. doi:10.1016/j.apcata.2004.01.020

H. G. Karge , Studies in Surface Science and Catalysis, ed. H. van Bekkum, E. M. Flanigen, P. A. Jacobs and J. C. Jansen, Elsevier, 2001, vol. 137, p. 707

J. Weitkamp , M.nnneds, J.Čejka, H.van Bekkum, A.Corma and F.Schüth, Studies in Surface Science and Catalysis, Elsevier, 2007, vol. 168, p. 787

You, Y. S., Kim, J.-H., & Seo, G. (2001). Liquid-phase catalytic degradation of polyethylene wax over silica-modified zeolite catalysts. Polymer Degradation and Stability, 72(2), 329-336. doi:10.1016/s0141-3910(01)00028-3

Manos, G., Garforth, A., & Dwyer, J. (2000). Catalytic Degradation of High-Density Polyethylene over Different Zeolitic Structures. Industrial & Engineering Chemistry Research, 39(5), 1198-1202. doi:10.1021/ie990512q

Zhou, Q., Wang, Y.-Z., Tang, C., & Zhang, Y.-H. (2003). Modifications of ZSM-5 zeolites and their applications in catalytic degradation of LDPE. Polymer Degradation and Stability, 80(1), 23-30. doi:10.1016/s0141-3910(02)00378-6

Zhang, H., Ma, Y., Song, K., Zhang, Y., & Tang, Y. (2013). Nano-crystallite oriented self-assembled ZSM-5 zeolite and its LDPE cracking properties: Effects of accessibility and strength of acid sites. Journal of Catalysis, 302, 115-125. doi:10.1016/j.jcat.2013.03.019

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record