Mostrar el registro sencillo del ítem
dc.contributor.author | Tarach, Karolina A. | es_ES |
dc.contributor.author | Góra-Marek, Kinga | es_ES |
dc.contributor.author | Martínez-Triguero, Joaquín | es_ES |
dc.contributor.author | Melian-Cabrera, Ignacio | es_ES |
dc.date.accessioned | 2020-11-04T04:31:57Z | |
dc.date.available | 2020-11-04T04:31:57Z | |
dc.date.issued | 2017-02-21 | es_ES |
dc.identifier.issn | 2044-4753 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/154023 | |
dc.description.abstract | [EN] The structural, textural and acidic characteristics of hierarchical ZSM-5 (Si/Al = 18¿32), obtained with two desilication approaches, and the effect of these treatments on the reactivity in various cracking reactions of variable feedstock size and severity have been investigated. Emphasis is given to understanding the accessibility of acid sites; this was investigated by textural analysis, FTIR probe molecules (pyridine, trimethylacetonitrile and 2,4,6-trimethylpyridine) and reactions involving n-decane, 1,3,5-triisopropylbenzene (TIPB), and low and high-density polyethylene, LDPE and HDPE, respectively. Higher surface areas and a narrower pore size distribution were obtained for NaOH&TBAOH-treated materials, comparing to NaOH-treated ones. FTIR studies of pivalonitrile and collidine adsorption correlate well with the mesopore surface area. For n-decane cracking activity, the acid strength is a determining factor, revealing that the NaOH&TBAOH treatment gave stronger sites than NaOH, but lower than the native zeolite. In contrast, the TIPB cracking activity was improved by the developed mesoporosity of the alkaline treated zeolites, and this was correlated to the pivalonitrile and collidine accessibility factors. During the n-decane and TIPB cracking, hydrogen transfer reactions were reduced, leading to high olefin production for the NaOH&TBAOH materials due to the shorter microporous paths after desilication. The increased accessibility of the acid sites also leads to an enhanced cracking activity of polyethylenes at low conversions, as determined by a decrease in the T5% and T50%; both parameters are linearly dependent on the pivalonitrile and collidine accessibility factors, for LDPE and HDPE. The T5% for HDPE is more influenced by the accessibility factors than it is for the LDPE. This is interpreted to be the result of the branching degree of HDPE and LDPE; linear HDPE is more sensitive to the enhanced number of pore mouths of ZSM-5 channels on the mesopores. At high conversion, the influence on the T50% of the accessibility factors for HDPE and LDPE is weaker, suggesting that the cracking at this stage involves intermediate molecules of smaller size with fewer diffusional limitations. With respect to our own prior work, the chosen zeolite and the cracking of polyolefins gave more pronounced differences for the hierarchical ZSM-5. | es_ES |
dc.description.sponsorship | K. T. thanks for financial support from the National Science Centre, Poland, Grant No. 2014/13/D/ST5/02761. I. M.-C. thanks De Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) for financial support, project no. 10284. K. G.-M. thanks for financial support from the National Science Centre, Poland, Grant No. 2015/18/E/ST4/00191. J.M.-T.thanks financial support from the Spanish Ministry of Economy and Competitiveness through the Severo Ochoa program (SEV-2012-0267) and the grant CTQ2015-68951-C3-1-R. M. J. Ortiz Iniesta is acknowledged for technical support in the TGA measurements. J. Datka is acknowledged for preliminary discussion on the results presented in the paper. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Catalysis Science & Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.title | Acidity and accessibility studies of desilicated ZSM-5 zeolites in terms of their effectiveness as catalysts in acid-catalyzed cracking processes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c6cy02609e | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2012-37925-C03-01/ES/CATALIZADORES PARA LA ENERGIA Y EL MEDIOAMBIENTE: ACTIVACION SELECTIVA DE ENLACES S-H Y C-H/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NWO//10284/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-68951-C3-1-R/ES/TRATAMIENTOS CATALITICOS AVANZADOS PARA LA VALORIZACION DE LA BIOMASA Y LA ELIMINACION DE RESIDUOS ASOCIADOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NCN//2014%2F13%2FD%2FST5%2F02761/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NCN//2015%2F18%2FE%2FST4%2F00191/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Tarach, KA.; Góra-Marek, K.; Martínez-Triguero, J.; Melian-Cabrera, I. (2017). Acidity and accessibility studies of desilicated ZSM-5 zeolites in terms of their effectiveness as catalysts in acid-catalyzed cracking processes. Catalysis Science & Technology. 7(4):858-873. https://doi.org/10.1039/c6cy02609e | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c6cy02609e | es_ES |
dc.description.upvformatpinicio | 858 | es_ES |
dc.description.upvformatpfin | 873 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\355203 | es_ES |
dc.contributor.funder | National Science Centre, Polonia | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Netherlands Organization for Scientific Research | es_ES |
dc.description.references | Abelló, S., Bonilla, A., & Pérez-Ramírez, J. (2009). Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching. Applied Catalysis A: General, 364(1-2), 191-198. doi:10.1016/j.apcata.2009.05.055 | es_ES |
dc.description.references | Müller, M., Harvey, G., & Prins, R. (2000). Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiCl4 by 1H, 29Si and 27Al MAS NMR. Microporous and Mesoporous Materials, 34(2), 135-147. doi:10.1016/s1387-1811(99)00167-5 | es_ES |
dc.description.references | Sadowska, K., Góra-Marek, K., & Datka, J. (2012). Hierarchic zeolites studied by IR spectroscopy: Acid properties of zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. Vibrational Spectroscopy, 63, 418-425. doi:10.1016/j.vibspec.2012.09.007 | es_ES |
dc.description.references | Pérez-RamÃrez, J., Verboekend, D., Bonilla, A., & Abelló, Sã². (2009). Zeolite Catalysts with Tunable Hierarchy Factor by Pore-Growth Moderators. Advanced Functional Materials, 19(24), 3972-3979. doi:10.1002/adfm.200901394 | es_ES |
dc.description.references | Sadowska, K., Wach, A., Olejniczak, Z., Kuśtrowski, P., & Datka, J. (2013). Hierarchic zeolites: Zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. Microporous and Mesoporous Materials, 167, 82-88. doi:10.1016/j.micromeso.2012.03.045 | es_ES |
dc.description.references | Serrano, D. P., Aguado, J., & Escola, J. M. (2012). Developing Advanced Catalysts for the Conversion of Polyolefinic Waste Plastics into Fuels and Chemicals. ACS Catalysis, 2(9), 1924-1941. doi:10.1021/cs3003403 | es_ES |
dc.description.references | Bonilla, A., Baudouin, D., & Pérez-Ramírez, J. (2009). Desilication of ferrierite zeolite for porosity generation and improved effectiveness in polyethylene pyrolysis. Journal of Catalysis, 265(2), 170-180. doi:10.1016/j.jcat.2009.04.022 | es_ES |
dc.description.references | Serrano, D. P., Aguado, J., Escola, J. M., Rodriguez, J. M., & Peral, A. (2010). Catalytic properties in polyolefin cracking of hierarchical nanocrystalline HZSM-5 samples prepared according to different strategies. Journal of Catalysis, 276(1), 152-160. doi:10.1016/j.jcat.2010.09.008 | es_ES |
dc.description.references | Aguado, J., Sotelo, J. L., Serrano, D. P., Calles, J. A., & Escola, J. M. (1997). Catalytic Conversion of Polyolefins into Liquid Fuels over MCM-41: Comparison with ZSM-5 and Amorphous SiO2−Al2O3. Energy & Fuels, 11(6), 1225-1231. doi:10.1021/ef970055v | es_ES |
dc.description.references | Kumar, S., Panda, A. K., & Singh, R. K. (2011). A review on tertiary recycling of high-density polyethylene to fuel. Resources, Conservation and Recycling, 55(11), 893-910. doi:10.1016/j.resconrec.2011.05.005 | es_ES |
dc.description.references | Mordi, R. C., Fields, R., & Dwyer, J. (1994). Thermolysis of low density polyethylene catalysed by zeolites. Journal of Analytical and Applied Pyrolysis, 29(1), 45-55. doi:10.1016/0165-2370(93)00789-p | es_ES |
dc.description.references | Castaño, P., Elordi, G., Olazar, M., Aguayo, A. T., Pawelec, B., & Bilbao, J. (2011). Insights into the coke deposited on HZSM-5, Hβ and HY zeolites during the cracking of polyethylene. Applied Catalysis B: Environmental, 104(1-2), 91-100. doi:10.1016/j.apcatb.2011.02.024 | es_ES |
dc.description.references | Elordi, G., Olazar, M., Lopez, G., Castaño, P., & Bilbao, J. (2011). Role of pore structure in the deactivation of zeolites (HZSM-5, Hβ and HY) by coke in the pyrolysis of polyethylene in a conical spouted bed reactor. Applied Catalysis B: Environmental, 102(1-2), 224-231. doi:10.1016/j.apcatb.2010.12.002 | es_ES |
dc.description.references | Verboekend, D., & Pérez-Ramírez, J. (2011). Desilication Mechanism Revisited: Highly Mesoporous All-Silica Zeolites Enabled Through Pore-Directing Agents. Chemistry - A European Journal, 17(4), 1137-1147. doi:10.1002/chem.201002589 | es_ES |
dc.description.references | Cundy, C. S., & Cox, P. A. (2005). The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, 82(1-2), 1-78. doi:10.1016/j.micromeso.2005.02.016 | es_ES |
dc.description.references | Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0 | es_ES |
dc.description.references | L. D. Bonifacio , B. V.Lotsch and G. A.Ozin, in Comprehensive Nanoscience and Technology, ed. G. D. Scholes and G. P. Wiederrecht, Academic Press, Amsterdam, 2011, pp. 69–125 | es_ES |
dc.description.references | Tarach, K. A., Martinez-Triguero, J., Rey, F., & Góra-Marek, K. (2016). Hydrothermal stability and catalytic performance of desilicated highly siliceous zeolites ZSM-5. Journal of Catalysis, 339, 256-269. doi:10.1016/j.jcat.2016.04.023 | es_ES |
dc.description.references | Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126 | es_ES |
dc.description.references | Góra-Marek, K., Derewiński, M., Sarv, P., & Datka, J. (2005). IR and NMR studies of mesoporous alumina and related aluminosilicates. Catalysis Today, 101(2), 131-138. doi:10.1016/j.cattod.2005.01.010 | es_ES |
dc.description.references | Sadowska, K., Góra-Marek, K., & Datka, J. (2013). Accessibility of Acid Sites in Hierarchical Zeolites: Quantitative IR Studies of Pivalonitrile Adsorption. The Journal of Physical Chemistry C, 117(18), 9237-9244. doi:10.1021/jp400400t | es_ES |
dc.description.references | Mlekodaj, K., Tarach, K., Datka, J., Góra-Marek, K., & Makowski, W. (2014). Porosity and accessibility of acid sites in desilicated ZSM-5 zeolites studied using adsorption of probe molecules. Microporous and Mesoporous Materials, 183, 54-61. doi:10.1016/j.micromeso.2013.08.051 | es_ES |
dc.description.references | Corma, A., & Martínez-Triguero, J. (1994). Kinetics of gasoil cracking and catalyst decay on SAPO-37 and USY molecular sieves. Applied Catalysis A: General, 118(2), 153-162. doi:10.1016/0926-860x(94)80310-2 | es_ES |
dc.description.references | Groen, J. C., Peffer, L. A. A., Moulijn, J. A., & Pérez-Ramírez, J. (2005). Mechanism of Hierarchical Porosity Development in MFI Zeolites by Desilication: The Role of Aluminium as a Pore-Directing Agent. Chemistry - A European Journal, 11(17), 4983-4994. doi:10.1002/chem.200500045 | es_ES |
dc.description.references | Majda, D., Tarach, K., Góra-Marek, K., Michalik-Zym, A., Napruszewska, B. D., Zimowska, M., & Serwicka, E. M. (2016). Thermoporosimetry of n-alkanes for characterization of mesoporous SBA-15 silicas – Towards deeper understanding the effect of the probe liquid nature. Microporous and Mesoporous Materials, 226, 25-33. doi:10.1016/j.micromeso.2015.12.020 | es_ES |
dc.description.references | Uytterhoeven, J. B., Christner, L. G., & Hall, W. K. (1965). Studies of the Hydrogen Held by Solids. VIII. The Decationated Zeolites. The Journal of Physical Chemistry, 69(6), 2117-2126. doi:10.1021/j100890a052 | es_ES |
dc.description.references | Góra-Marek, K., & Datka, J. (2006). IR studies of OH groups in mesoporous aluminosilicates. Applied Catalysis A: General, 302(1), 104-109. doi:10.1016/j.apcata.2005.12.027 | es_ES |
dc.description.references | H. Knözinger , in Adsorption on Ordered Surfaces of Ionic Solids and Thin Films: Proceedings of the 106th WE-Heraeus Seminar, Bad Honnef, Germany, February 15–18, 1993, ed. H.-J. Freund and E. Umbach, Springer Berlin Heidelberg, Berlin, Heidelberg, 1993, pp. 257–267 | es_ES |
dc.description.references | Gonzales, N. O., Bell, A. T., & Chakraborty, A. K. (1997). Density Functional Theory Calculations of the Effects of Local Composition and Defect Structure on the Proton Affinity of H−ZSM-5. The Journal of Physical Chemistry B, 101(48), 10058-10064. doi:10.1021/jp971449q | es_ES |
dc.description.references | Derewiński, M., Góra-Marek, K., Lázár, K., & Datka, J. (2008). Nature of active sites in the Fe-TON Zeolites: Mössbauer and IR studies. Studies in Surface Science and Catalysis, 865-868. doi:10.1016/s0167-2991(08)80025-0 | es_ES |
dc.description.references | Groen, J. C., Bach, T., Ziese, U., Paulaime-van Donk, A. M., de Jong, K. P., Moulijn, J. A., & Pérez-Ramírez, J. (2005). Creation of Hollow Zeolite Architectures by Controlled Desilication of Al-Zoned ZSM-5 Crystals. Journal of the American Chemical Society, 127(31), 10792-10793. doi:10.1021/ja052592x | es_ES |
dc.description.references | Tarach, K., Góra-Marek, K., Tekla, J., Brylewska, K., Datka, J., Mlekodaj, K., … Rey, F. (2014). Catalytic cracking performance of alkaline-treated zeolite Beta in the terms of acid sites properties and their accessibility. Journal of Catalysis, 312, 46-57. doi:10.1016/j.jcat.2014.01.009 | es_ES |
dc.description.references | Milina, M., Mitchell, S., Crivelli, P., Cooke, D., & Pérez-Ramírez, J. (2014). Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts. Nature Communications, 5(1). doi:10.1038/ncomms4922 | es_ES |
dc.description.references | Corma, A., Miguel, P. J., & Orchille´s, A. V. (1994). Influence of hydrocarbon chain length and zeolite structure on the catalyst activity and deactivation for n-alkanes cracking. Applied Catalysis A: General, 117(1), 29-40. doi:10.1016/0926-860x(94)80156-8 | es_ES |
dc.description.references | XU, B., SIEVERS, C., HONG, S., PRINS, R., & VANBOKHOVEN, J. (2006). Catalytic activity of Brønsted acid sites in zeolites: Intrinsic activity, rate-limiting step, and influence of the local structure of the acid sites. Journal of Catalysis, 244(2), 163-168. doi:10.1016/j.jcat.2006.08.022 | es_ES |
dc.description.references | Corma, A. (2004). Different process schemes for converting light straight run and fluid catalytic cracking naphthas in a FCC unit for maximum propylene production. Applied Catalysis A: General, 265(2), 195-206. doi:10.1016/j.apcata.2004.01.020 | es_ES |
dc.description.references | H. G. Karge , Studies in Surface Science and Catalysis, ed. H. van Bekkum, E. M. Flanigen, P. A. Jacobs and J. C. Jansen, Elsevier, 2001, vol. 137, p. 707 | es_ES |
dc.description.references | J. Weitkamp , M.nnneds, J.Čejka, H.van Bekkum, A.Corma and F.Schüth, Studies in Surface Science and Catalysis, Elsevier, 2007, vol. 168, p. 787 | es_ES |
dc.description.references | You, Y. S., Kim, J.-H., & Seo, G. (2001). Liquid-phase catalytic degradation of polyethylene wax over silica-modified zeolite catalysts. Polymer Degradation and Stability, 72(2), 329-336. doi:10.1016/s0141-3910(01)00028-3 | es_ES |
dc.description.references | Manos, G., Garforth, A., & Dwyer, J. (2000). Catalytic Degradation of High-Density Polyethylene over Different Zeolitic Structures. Industrial & Engineering Chemistry Research, 39(5), 1198-1202. doi:10.1021/ie990512q | es_ES |
dc.description.references | Zhou, Q., Wang, Y.-Z., Tang, C., & Zhang, Y.-H. (2003). Modifications of ZSM-5 zeolites and their applications in catalytic degradation of LDPE. Polymer Degradation and Stability, 80(1), 23-30. doi:10.1016/s0141-3910(02)00378-6 | es_ES |
dc.description.references | Zhang, H., Ma, Y., Song, K., Zhang, Y., & Tang, Y. (2013). Nano-crystallite oriented self-assembled ZSM-5 zeolite and its LDPE cracking properties: Effects of accessibility and strength of acid sites. Journal of Catalysis, 302, 115-125. doi:10.1016/j.jcat.2013.03.019 | es_ES |