- -

Acidity and accessibility studies of desilicated ZSM-5 zeolites in terms of their effectiveness as catalysts in acid-catalyzed cracking processes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Acidity and accessibility studies of desilicated ZSM-5 zeolites in terms of their effectiveness as catalysts in acid-catalyzed cracking processes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tarach, Karolina A. es_ES
dc.contributor.author Góra-Marek, Kinga es_ES
dc.contributor.author Martínez-Triguero, Joaquín es_ES
dc.contributor.author Melian-Cabrera, Ignacio es_ES
dc.date.accessioned 2020-11-04T04:31:57Z
dc.date.available 2020-11-04T04:31:57Z
dc.date.issued 2017-02-21 es_ES
dc.identifier.issn 2044-4753 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154023
dc.description.abstract [EN] The structural, textural and acidic characteristics of hierarchical ZSM-5 (Si/Al = 18¿32), obtained with two desilication approaches, and the effect of these treatments on the reactivity in various cracking reactions of variable feedstock size and severity have been investigated. Emphasis is given to understanding the accessibility of acid sites; this was investigated by textural analysis, FTIR probe molecules (pyridine, trimethylacetonitrile and 2,4,6-trimethylpyridine) and reactions involving n-decane, 1,3,5-triisopropylbenzene (TIPB), and low and high-density polyethylene, LDPE and HDPE, respectively. Higher surface areas and a narrower pore size distribution were obtained for NaOH&TBAOH-treated materials, comparing to NaOH-treated ones. FTIR studies of pivalonitrile and collidine adsorption correlate well with the mesopore surface area. For n-decane cracking activity, the acid strength is a determining factor, revealing that the NaOH&TBAOH treatment gave stronger sites than NaOH, but lower than the native zeolite. In contrast, the TIPB cracking activity was improved by the developed mesoporosity of the alkaline treated zeolites, and this was correlated to the pivalonitrile and collidine accessibility factors. During the n-decane and TIPB cracking, hydrogen transfer reactions were reduced, leading to high olefin production for the NaOH&TBAOH materials due to the shorter microporous paths after desilication. The increased accessibility of the acid sites also leads to an enhanced cracking activity of polyethylenes at low conversions, as determined by a decrease in the T5% and T50%; both parameters are linearly dependent on the pivalonitrile and collidine accessibility factors, for LDPE and HDPE. The T5% for HDPE is more influenced by the accessibility factors than it is for the LDPE. This is interpreted to be the result of the branching degree of HDPE and LDPE; linear HDPE is more sensitive to the enhanced number of pore mouths of ZSM-5 channels on the mesopores. At high conversion, the influence on the T50% of the accessibility factors for HDPE and LDPE is weaker, suggesting that the cracking at this stage involves intermediate molecules of smaller size with fewer diffusional limitations. With respect to our own prior work, the chosen zeolite and the cracking of polyolefins gave more pronounced differences for the hierarchical ZSM-5. es_ES
dc.description.sponsorship K. T. thanks for financial support from the National Science Centre, Poland, Grant No. 2014/13/D/ST5/02761. I. M.-C. thanks De Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) for financial support, project no. 10284. K. G.-M. thanks for financial support from the National Science Centre, Poland, Grant No. 2015/18/E/ST4/00191. J.M.-T.thanks financial support from the Spanish Ministry of Economy and Competitiveness through the Severo Ochoa program (SEV-2012-0267) and the grant CTQ2015-68951-C3-1-R. M. J. Ortiz Iniesta is acknowledged for technical support in the TGA measurements. J. Datka is acknowledged for preliminary discussion on the results presented in the paper. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Catalysis Science & Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.title Acidity and accessibility studies of desilicated ZSM-5 zeolites in terms of their effectiveness as catalysts in acid-catalyzed cracking processes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c6cy02609e es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-37925-C03-01/ES/CATALIZADORES PARA LA ENERGIA Y EL MEDIOAMBIENTE: ACTIVACION SELECTIVA DE ENLACES S-H Y C-H/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NWO//10284/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-68951-C3-1-R/ES/TRATAMIENTOS CATALITICOS AVANZADOS PARA LA VALORIZACION DE LA BIOMASA Y LA ELIMINACION DE RESIDUOS ASOCIADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NCN//2014%2F13%2FD%2FST5%2F02761/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NCN//2015%2F18%2FE%2FST4%2F00191/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Tarach, KA.; Góra-Marek, K.; Martínez-Triguero, J.; Melian-Cabrera, I. (2017). Acidity and accessibility studies of desilicated ZSM-5 zeolites in terms of their effectiveness as catalysts in acid-catalyzed cracking processes. Catalysis Science & Technology. 7(4):858-873. https://doi.org/10.1039/c6cy02609e es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c6cy02609e es_ES
dc.description.upvformatpinicio 858 es_ES
dc.description.upvformatpfin 873 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\355203 es_ES
dc.contributor.funder National Science Centre, Polonia es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Netherlands Organization for Scientific Research es_ES
dc.description.references Abelló, S., Bonilla, A., & Pérez-Ramírez, J. (2009). Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching. Applied Catalysis A: General, 364(1-2), 191-198. doi:10.1016/j.apcata.2009.05.055 es_ES
dc.description.references Müller, M., Harvey, G., & Prins, R. (2000). Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiCl4 by 1H, 29Si and 27Al MAS NMR. Microporous and Mesoporous Materials, 34(2), 135-147. doi:10.1016/s1387-1811(99)00167-5 es_ES
dc.description.references Sadowska, K., Góra-Marek, K., & Datka, J. (2012). Hierarchic zeolites studied by IR spectroscopy: Acid properties of zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. Vibrational Spectroscopy, 63, 418-425. doi:10.1016/j.vibspec.2012.09.007 es_ES
dc.description.references Pérez-Ramírez, J., Verboekend, D., Bonilla, A., & Abelló, Sã². (2009). Zeolite Catalysts with Tunable Hierarchy Factor by Pore-Growth Moderators. Advanced Functional Materials, 19(24), 3972-3979. doi:10.1002/adfm.200901394 es_ES
dc.description.references Sadowska, K., Wach, A., Olejniczak, Z., Kuśtrowski, P., & Datka, J. (2013). Hierarchic zeolites: Zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. Microporous and Mesoporous Materials, 167, 82-88. doi:10.1016/j.micromeso.2012.03.045 es_ES
dc.description.references Serrano, D. P., Aguado, J., & Escola, J. M. (2012). Developing Advanced Catalysts for the Conversion of Polyolefinic Waste Plastics into Fuels and Chemicals. ACS Catalysis, 2(9), 1924-1941. doi:10.1021/cs3003403 es_ES
dc.description.references Bonilla, A., Baudouin, D., & Pérez-Ramírez, J. (2009). Desilication of ferrierite zeolite for porosity generation and improved effectiveness in polyethylene pyrolysis. Journal of Catalysis, 265(2), 170-180. doi:10.1016/j.jcat.2009.04.022 es_ES
dc.description.references Serrano, D. P., Aguado, J., Escola, J. M., Rodriguez, J. M., & Peral, A. (2010). Catalytic properties in polyolefin cracking of hierarchical nanocrystalline HZSM-5 samples prepared according to different strategies. Journal of Catalysis, 276(1), 152-160. doi:10.1016/j.jcat.2010.09.008 es_ES
dc.description.references Aguado, J., Sotelo, J. L., Serrano, D. P., Calles, J. A., & Escola, J. M. (1997). Catalytic Conversion of Polyolefins into Liquid Fuels over MCM-41:  Comparison with ZSM-5 and Amorphous SiO2−Al2O3. Energy & Fuels, 11(6), 1225-1231. doi:10.1021/ef970055v es_ES
dc.description.references Kumar, S., Panda, A. K., & Singh, R. K. (2011). A review on tertiary recycling of high-density polyethylene to fuel. Resources, Conservation and Recycling, 55(11), 893-910. doi:10.1016/j.resconrec.2011.05.005 es_ES
dc.description.references Mordi, R. C., Fields, R., & Dwyer, J. (1994). Thermolysis of low density polyethylene catalysed by zeolites. Journal of Analytical and Applied Pyrolysis, 29(1), 45-55. doi:10.1016/0165-2370(93)00789-p es_ES
dc.description.references Castaño, P., Elordi, G., Olazar, M., Aguayo, A. T., Pawelec, B., & Bilbao, J. (2011). Insights into the coke deposited on HZSM-5, Hβ and HY zeolites during the cracking of polyethylene. Applied Catalysis B: Environmental, 104(1-2), 91-100. doi:10.1016/j.apcatb.2011.02.024 es_ES
dc.description.references Elordi, G., Olazar, M., Lopez, G., Castaño, P., & Bilbao, J. (2011). Role of pore structure in the deactivation of zeolites (HZSM-5, Hβ and HY) by coke in the pyrolysis of polyethylene in a conical spouted bed reactor. Applied Catalysis B: Environmental, 102(1-2), 224-231. doi:10.1016/j.apcatb.2010.12.002 es_ES
dc.description.references Verboekend, D., & Pérez-Ramírez, J. (2011). Desilication Mechanism Revisited: Highly Mesoporous All-Silica Zeolites Enabled Through Pore-Directing Agents. Chemistry - A European Journal, 17(4), 1137-1147. doi:10.1002/chem.201002589 es_ES
dc.description.references Cundy, C. S., & Cox, P. A. (2005). The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, 82(1-2), 1-78. doi:10.1016/j.micromeso.2005.02.016 es_ES
dc.description.references Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0 es_ES
dc.description.references L. D. Bonifacio , B. V.Lotsch and G. A.Ozin, in Comprehensive Nanoscience and Technology, ed. G. D. Scholes and G. P. Wiederrecht, Academic Press, Amsterdam, 2011, pp. 69–125 es_ES
dc.description.references Tarach, K. A., Martinez-Triguero, J., Rey, F., & Góra-Marek, K. (2016). Hydrothermal stability and catalytic performance of desilicated highly siliceous zeolites ZSM-5. Journal of Catalysis, 339, 256-269. doi:10.1016/j.jcat.2016.04.023 es_ES
dc.description.references Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126 es_ES
dc.description.references Góra-Marek, K., Derewiński, M., Sarv, P., & Datka, J. (2005). IR and NMR studies of mesoporous alumina and related aluminosilicates. Catalysis Today, 101(2), 131-138. doi:10.1016/j.cattod.2005.01.010 es_ES
dc.description.references Sadowska, K., Góra-Marek, K., & Datka, J. (2013). Accessibility of Acid Sites in Hierarchical Zeolites: Quantitative IR Studies of Pivalonitrile Adsorption. The Journal of Physical Chemistry C, 117(18), 9237-9244. doi:10.1021/jp400400t es_ES
dc.description.references Mlekodaj, K., Tarach, K., Datka, J., Góra-Marek, K., & Makowski, W. (2014). Porosity and accessibility of acid sites in desilicated ZSM-5 zeolites studied using adsorption of probe molecules. Microporous and Mesoporous Materials, 183, 54-61. doi:10.1016/j.micromeso.2013.08.051 es_ES
dc.description.references Corma, A., & Martínez-Triguero, J. (1994). Kinetics of gasoil cracking and catalyst decay on SAPO-37 and USY molecular sieves. Applied Catalysis A: General, 118(2), 153-162. doi:10.1016/0926-860x(94)80310-2 es_ES
dc.description.references Groen, J. C., Peffer, L. A. A., Moulijn, J. A., & Pérez-Ramírez, J. (2005). Mechanism of Hierarchical Porosity Development in MFI Zeolites by Desilication: The Role of Aluminium as a Pore-Directing Agent. Chemistry - A European Journal, 11(17), 4983-4994. doi:10.1002/chem.200500045 es_ES
dc.description.references Majda, D., Tarach, K., Góra-Marek, K., Michalik-Zym, A., Napruszewska, B. D., Zimowska, M., & Serwicka, E. M. (2016). Thermoporosimetry of n-alkanes for characterization of mesoporous SBA-15 silicas – Towards deeper understanding the effect of the probe liquid nature. Microporous and Mesoporous Materials, 226, 25-33. doi:10.1016/j.micromeso.2015.12.020 es_ES
dc.description.references Uytterhoeven, J. B., Christner, L. G., & Hall, W. K. (1965). Studies of the Hydrogen Held by Solids. VIII. The Decationated Zeolites. The Journal of Physical Chemistry, 69(6), 2117-2126. doi:10.1021/j100890a052 es_ES
dc.description.references Góra-Marek, K., & Datka, J. (2006). IR studies of OH groups in mesoporous aluminosilicates. Applied Catalysis A: General, 302(1), 104-109. doi:10.1016/j.apcata.2005.12.027 es_ES
dc.description.references H. Knözinger , in Adsorption on Ordered Surfaces of Ionic Solids and Thin Films: Proceedings of the 106th WE-Heraeus Seminar, Bad Honnef, Germany, February 15–18, 1993, ed. H.-J. Freund and E. Umbach, Springer Berlin Heidelberg, Berlin, Heidelberg, 1993, pp. 257–267 es_ES
dc.description.references Gonzales, N. O., Bell, A. T., & Chakraborty, A. K. (1997). Density Functional Theory Calculations of the Effects of Local Composition and Defect Structure on the Proton Affinity of H−ZSM-5. The Journal of Physical Chemistry B, 101(48), 10058-10064. doi:10.1021/jp971449q es_ES
dc.description.references Derewiński, M., Góra-Marek, K., Lázár, K., & Datka, J. (2008). Nature of active sites in the Fe-TON Zeolites: Mössbauer and IR studies. Studies in Surface Science and Catalysis, 865-868. doi:10.1016/s0167-2991(08)80025-0 es_ES
dc.description.references Groen, J. C., Bach, T., Ziese, U., Paulaime-van Donk, A. M., de Jong, K. P., Moulijn, J. A., & Pérez-Ramírez, J. (2005). Creation of Hollow Zeolite Architectures by Controlled Desilication of Al-Zoned ZSM-5 Crystals. Journal of the American Chemical Society, 127(31), 10792-10793. doi:10.1021/ja052592x es_ES
dc.description.references Tarach, K., Góra-Marek, K., Tekla, J., Brylewska, K., Datka, J., Mlekodaj, K., … Rey, F. (2014). Catalytic cracking performance of alkaline-treated zeolite Beta in the terms of acid sites properties and their accessibility. Journal of Catalysis, 312, 46-57. doi:10.1016/j.jcat.2014.01.009 es_ES
dc.description.references Milina, M., Mitchell, S., Crivelli, P., Cooke, D., & Pérez-Ramírez, J. (2014). Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts. Nature Communications, 5(1). doi:10.1038/ncomms4922 es_ES
dc.description.references Corma, A., Miguel, P. J., & Orchille´s, A. V. (1994). Influence of hydrocarbon chain length and zeolite structure on the catalyst activity and deactivation for n-alkanes cracking. Applied Catalysis A: General, 117(1), 29-40. doi:10.1016/0926-860x(94)80156-8 es_ES
dc.description.references XU, B., SIEVERS, C., HONG, S., PRINS, R., & VANBOKHOVEN, J. (2006). Catalytic activity of Brønsted acid sites in zeolites: Intrinsic activity, rate-limiting step, and influence of the local structure of the acid sites. Journal of Catalysis, 244(2), 163-168. doi:10.1016/j.jcat.2006.08.022 es_ES
dc.description.references Corma, A. (2004). Different process schemes for converting light straight run and fluid catalytic cracking naphthas in a FCC unit for maximum propylene production. Applied Catalysis A: General, 265(2), 195-206. doi:10.1016/j.apcata.2004.01.020 es_ES
dc.description.references H. G. Karge , Studies in Surface Science and Catalysis, ed. H. van Bekkum, E. M. Flanigen, P. A. Jacobs and J. C. Jansen, Elsevier, 2001, vol. 137, p. 707 es_ES
dc.description.references J. Weitkamp , M.nnneds, J.Čejka, H.van Bekkum, A.Corma and F.Schüth, Studies in Surface Science and Catalysis, Elsevier, 2007, vol. 168, p. 787 es_ES
dc.description.references You, Y. S., Kim, J.-H., & Seo, G. (2001). Liquid-phase catalytic degradation of polyethylene wax over silica-modified zeolite catalysts. Polymer Degradation and Stability, 72(2), 329-336. doi:10.1016/s0141-3910(01)00028-3 es_ES
dc.description.references Manos, G., Garforth, A., & Dwyer, J. (2000). Catalytic Degradation of High-Density Polyethylene over Different Zeolitic Structures. Industrial & Engineering Chemistry Research, 39(5), 1198-1202. doi:10.1021/ie990512q es_ES
dc.description.references Zhou, Q., Wang, Y.-Z., Tang, C., & Zhang, Y.-H. (2003). Modifications of ZSM-5 zeolites and their applications in catalytic degradation of LDPE. Polymer Degradation and Stability, 80(1), 23-30. doi:10.1016/s0141-3910(02)00378-6 es_ES
dc.description.references Zhang, H., Ma, Y., Song, K., Zhang, Y., & Tang, Y. (2013). Nano-crystallite oriented self-assembled ZSM-5 zeolite and its LDPE cracking properties: Effects of accessibility and strength of acid sites. Journal of Catalysis, 302, 115-125. doi:10.1016/j.jcat.2013.03.019 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem