- -

Furfural Hydrogenation on Modified Niobia

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Furfural Hydrogenation on Modified Niobia

Mostrar el registro completo del ítem

Jouve, A.; Cattaneo, S.; Delgado-Muñoz, D.; Scotti, N.; Evangelisti, C.; López Nieto, JM.; Prati, L. (2019). Furfural Hydrogenation on Modified Niobia. Applied Sciences. 9(11):1-14. https://doi.org/10.3390/app9112287

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/154024

Ficheros en el ítem

Metadatos del ítem

Título: Furfural Hydrogenation on Modified Niobia
Autor: Jouve, Andrea Cattaneo, Stefano Delgado-Muñoz, Daniel Scotti, Nicola Evangelisti, Claudio López Nieto, José Manuel Prati, Laura
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] In this study, niobia-based materials have been used as supports for Pt nanoparticles and used in the hydrogenation of furfural. The incorporation of dopants (W6+ and Ti4+) in the Nb2O5 structure induced modifications ...[+]
Palabras clave: Platinum , Niobia , Niobium oxide , Furfural , Hydrogenation , Furfuryl alcohol , Pentanediol , Lewis acid
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app9112287
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/app9112287
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099668-B-C21/ES/VALORIZACION DE CO2: CAPTURA, Y TRANSFORMACION CATALITICA PARA ALMACENAMIENTO DE ENERGIA, COMBUSTIBLES Y PRODUCTOS QUIMICOS/
Tipo: Artículo

References

Binder, J. B., & Raines, R. T. (2009). Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals. Journal of the American Chemical Society, 131(5), 1979-1985. doi:10.1021/ja808537j

Cao, Q., Guo, X., Guan, J., Mu, X., & Zhang, D. (2011). A process for efficient conversion of fructose into 5-hydroxymethylfurfural in ammonium salts. Applied Catalysis A: General, 403(1-2), 98-103. doi:10.1016/j.apcata.2011.06.018

Cattaneo, S., Naslhajian, H., Somodi, F., Evangelisti, C., Villa, A., & Prati, L. (2018). Ruthenium on Carbonaceous Materials for the Selective Hydrogenation of HMF. Molecules, 23(8), 2007. doi:10.3390/molecules23082007 [+]
Binder, J. B., & Raines, R. T. (2009). Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals. Journal of the American Chemical Society, 131(5), 1979-1985. doi:10.1021/ja808537j

Cao, Q., Guo, X., Guan, J., Mu, X., & Zhang, D. (2011). A process for efficient conversion of fructose into 5-hydroxymethylfurfural in ammonium salts. Applied Catalysis A: General, 403(1-2), 98-103. doi:10.1016/j.apcata.2011.06.018

Cattaneo, S., Naslhajian, H., Somodi, F., Evangelisti, C., Villa, A., & Prati, L. (2018). Ruthenium on Carbonaceous Materials for the Selective Hydrogenation of HMF. Molecules, 23(8), 2007. doi:10.3390/molecules23082007

Qi, X., Watanabe, M., Aida, T. M., & Smith, R. L. (2012). Synergistic conversion of glucose into 5-hydroxymethylfurfural in ionic liquid–water mixtures. Bioresource Technology, 109, 224-228. doi:10.1016/j.biortech.2012.01.034

Ormsby, R., Kastner, J. R., & Miller, J. (2012). Hemicellulose hydrolysis using solid acid catalysts generated from biochar. Catalysis Today, 190(1), 89-97. doi:10.1016/j.cattod.2012.02.050

Lavarack, B. P., Griffin, G. J., & Rodman, D. (2002). The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass and Bioenergy, 23(5), 367-380. doi:10.1016/s0961-9534(02)00066-1

Carà, P. D., Pagliaro, M., Elmekawy, A., Brown, D. R., Verschuren, P., Shiju, N. R., & Rothenberg, G. (2013). Hemicellulose hydrolysis catalysed by solid acids. Catalysis Science & Technology, 3(8), 2057. doi:10.1039/c3cy20838a

O’Neill, R., Ahmad, M. N., Vanoye, L., & Aiouache, F. (2009). Kinetics of Aqueous Phase Dehydration of Xylose into Furfural Catalyzed by ZSM-5 Zeolite. Industrial & Engineering Chemistry Research, 48(9), 4300-4306. doi:10.1021/ie801599k

Weingarten, R., Cho, J., Conner, Jr., W. C., & Huber, G. W. (2010). Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating. Green Chemistry, 12(8), 1423. doi:10.1039/c003459b

Gómez Bernal, H., Bernazzani, L., & Raspolli Galletti, A. M. (2014). Furfural from corn stover hemicelluloses. A mineral acid-free approach. Green Chem., 16(8), 3734-3740. doi:10.1039/c4gc00450g

Delbecq, F., Wang, Y., Muralidhara, A., El Ouardi, K., Marlair, G., & Len, C. (2018). Hydrolysis of Hemicellulose and Derivatives—A Review of Recent Advances in the Production of Furfural. Frontiers in Chemistry, 6. doi:10.3389/fchem.2018.00146

Mariscal, R., Maireles-Torres, P., Ojeda, M., Sádaba, I., & López Granados, M. (2016). Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy & Environmental Science, 9(4), 1144-1189. doi:10.1039/c5ee02666k

Yan, K., Wu, G., Lafleur, T., & Jarvis, C. (2014). Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renewable and Sustainable Energy Reviews, 38, 663-676. doi:10.1016/j.rser.2014.07.003

Bui, L., Luo, H., Gunther, W. R., & Román-Leshkov, Y. (2013). Domino Reaction Catalyzed by Zeolites with Brønsted and Lewis Acid Sites for the Production of γ-Valerolactone from Furfural. Angewandte Chemie International Edition, 52(31), 8022-8025. doi:10.1002/anie.201302575

Taylor, M. J., Durndell, L. J., Isaacs, M. A., Parlett, C. M. A., Wilson, K., Lee, A. F., & Kyriakou, G. (2016). Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions. Applied Catalysis B: Environmental, 180, 580-585. doi:10.1016/j.apcatb.2015.07.006

Schäfer, H., Gruehn, R., & Schulte, F. (1966). The Modifications of Niobium Pentoxide. Angewandte Chemie International Edition in English, 5(1), 40-52. doi:10.1002/anie.196600401

Allpress, J. G., Sanders, J. V., & Wadsley, A. D. (1968). Electron microscopy of high-temperature Nb2O5 and related phases. Physica Status Solidi (b), 25(2), 541-550. doi:10.1002/pssb.19680250206

Jehng, J.-M., & Wachs, I. E. (1990). The molecular structures and reactivity of supported niobium oxide catalysts. Catalysis Today, 8(1), 37-55. doi:10.1016/0920-5861(90)87006-o

Jehng, J. M., & Wachs, I. E. (1991). Molecular structures of supported niobium oxide catalysts under in situ conditions. The Journal of Physical Chemistry, 95(19), 7373-7379. doi:10.1021/j100172a049

Carniti, P., Gervasini, A., & Marzo, M. (2010). Silica–niobia oxides as viable acid catalysts in water: Effective vs. intrinsic acidity. Catalysis Today, 152(1-4), 42-47. doi:10.1016/j.cattod.2009.07.111

Gupta, N. K., Fukuoka, A., & Nakajima, K. (2017). Amorphous Nb2O5 as a Selective and Reusable Catalyst for Furfural Production from Xylose in Biphasic Water and Toluene. ACS Catalysis, 7(4), 2430-2436. doi:10.1021/acscatal.6b03682

Marzo, M., Gervasini, A., & Carniti, P. (2012). Improving stability of Nb2O5 catalyst in fructose dehydration reaction in water solvent by ion-doping. Catalysis Today, 192(1), 89-95. doi:10.1016/j.cattod.2011.12.014

CARNITI, P., GERVASINI, A., BIELLA, S., & AUROUX, A. (2006). Niobic acid and niobium phosphate as highly acidic viable catalysts in aqueous medium: Fructose dehydration reaction. Catalysis Today, 118(3-4), 373-378. doi:10.1016/j.cattod.2006.07.024

Omata, K., Izumi, S., Murayama, T., & Ueda, W. (2013). Hydrothermal synthesis of W–Nb complex metal oxides and their application to catalytic dehydration of glycerol to acrolein. Catalysis Today, 201, 7-11. doi:10.1016/j.cattod.2012.06.004

García-Sancho, C., Cecilia, J. A., Moreno-Ruiz, A., Mérida-Robles, J. M., Santamaría-González, J., Moreno-Tost, R., & Maireles-Torres, P. (2015). Influence of the niobium supported species on the catalytic dehydration of glycerol to acrolein. Applied Catalysis B: Environmental, 179, 139-149. doi:10.1016/j.apcatb.2015.05.014

Silva, Â., Wilson, K., Lee, A. F., dos Santos, V. C., Cons Bacilla, A. C., Mantovani, K. M., & Nakagaki, S. (2017). Nb2O5/SBA-15 catalyzed propanoic acid esterification. Applied Catalysis B: Environmental, 205, 498-504. doi:10.1016/j.apcatb.2016.12.066

Noronha, F. ., Aranda, D. A. ., Ordine, A. ., & Schmal, M. (2000). The promoting effect of Nb2O5 addition to Pd/Al2O3 catalysts on propane oxidation. Catalysis Today, 57(3-4), 275-282. doi:10.1016/s0920-5861(99)00337-5

Molina, M. J. C., Granados, M. L., Gervasini, A., & Carniti, P. (2015). Exploitment of niobium oxide effective acidity for xylose dehydration to furfural. Catalysis Today, 254, 90-98. doi:10.1016/j.cattod.2015.01.018

Stošić, D., Bennici, S., Rakić, V., & Auroux, A. (2012). CeO2–Nb2O5 mixed oxide catalysts: Preparation, characterization and catalytic activity in fructose dehydration reaction. Catalysis Today, 192(1), 160-168. doi:10.1016/j.cattod.2011.10.040

Stošić, D., Bennici, S., Pavlović, V., Rakić, V., & Auroux, A. (2014). Tuning the acidity of niobia: Characterization and catalytic activity of Nb2O5–MeO2 (Me = Ti, Zr, Ce) mesoporous mixed oxides. Materials Chemistry and Physics, 146(3), 337-345. doi:10.1016/j.matchemphys.2014.03.033

Li, H., Fang, Z., Smith, R. L., & Yang, S. (2016). Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Progress in Energy and Combustion Science, 55, 98-194. doi:10.1016/j.pecs.2016.04.004

Evangelisti, C., Aronica, L. A., Botavina, M., Martra, G., Battocchio, C., & Polzonetti, G. (2013). Chemoselective hydrogenation of halonitroaromatics over γ-Fe2O3-supported platinum nanoparticles: The role of the support on their catalytic activity and selectivity. Journal of Molecular Catalysis A: Chemical, 366, 288-293. doi:10.1016/j.molcata.2012.10.007

Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145

Oberhauser, W., Evangelisti, C., Jumde, R. P., Psaro, R., Vizza, F., Bevilacqua, M., … Serp, P. (2015). Platinum on carbonaceous supports for glycerol hydrogenolysis: Support effect. Journal of Catalysis, 325, 111-117. doi:10.1016/j.jcat.2015.03.003

Oberhauser, W., Evangelisti, C., Tiozzo, C., Vizza, F., & Psaro, R. (2016). Lactic Acid from Glycerol by Ethylene-Stabilized Platinum-Nanoparticles. ACS Catalysis, 6(3), 1671-1674. doi:10.1021/acscatal.5b02914

La Salvia, N., Delgado, D., Ruiz-Rodríguez, L., Nadji, L., Massó, A., & Nieto, J. M. L. (2017). V- and Nb-containing tungsten bronzes catalysts for the aerobic transformation of ethanol and glycerol. Bulk and supported materials. Catalysis Today, 296, 2-9. doi:10.1016/j.cattod.2017.04.009

Fernández-Arroyo, A., Delgado, D., Domine, M. E., & López-Nieto, J. M. (2017). Upgrading of oxygenated compounds present in aqueous biomass-derived feedstocks over NbOx-based catalysts. Catalysis Science & Technology, 7(23), 5495-5499. doi:10.1039/c7cy00916j

Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751-767. doi:10.1107/s0567739476001551

Botella, P., Solsona, B., López Nieto, J. M., Concepción, P., Jordá, J. L., & Doménech-Carbó, M. T. (2010). Mo–W-containing tetragonal tungsten bronzes through isomorphic substitution of molybdenum by tungsten. Catalysis Today, 158(1-2), 162-169. doi:10.1016/j.cattod.2010.05.024

Jehng, J. M., & Wachs, I. E. (1991). Structural chemistry and Raman spectra of niobium oxides. Chemistry of Materials, 3(1), 100-107. doi:10.1021/cm00013a025

Delgado, D., Fernández-Arroyo, A., Domine, M. E., García-González, E., & López Nieto, J. M. (2019). W–Nb–O oxides with tunable acid properties as efficient catalysts for the transformation of biomass-derived oxygenates in aqueous systems. Catalysis Science & Technology, 9(12), 3126-3136. doi:10.1039/c9cy00367c

Scotti, N., Dangate, M., Gervasini, A., Evangelisti, C., Ravasio, N., & Zaccheria, F. (2014). Unraveling the Role of Low Coordination Sites in a Cu Metal Nanoparticle: A Step toward the Selective Synthesis of Second Generation Biofuels. ACS Catalysis, 4(8), 2818-2826. doi:10.1021/cs500581a

Crépeau, G., Montouillout, V., Vimont, A., Mariey, L., Cseri, T., & Maugé, F. (2006). Nature, Structure and Strength of the Acidic Sites of Amorphous Silica Alumina:  An IR and NMR Study. The Journal of Physical Chemistry B, 110(31), 15172-15185. doi:10.1021/jp062252d

Ravindra Reddy, C., Nagendrappa, G., & Jai Prakash, B. S. (2007). Surface acidity study of M+-montmorillonite clay catalysts by FT-IR spectroscopy: Correlation with esterification activity. Catalysis Communications, 8(3), 241-246. doi:10.1016/j.catcom.2006.06.023

Gervasini, A., Carniti, P., Bossola, F., Imparato, C., Pernice, P., Clayden, N. J., & Aronne, A. (2018). New Nb-P-Si ternary oxide materials and their use in heterogeneous acid catalysis. Molecular Catalysis, 458, 280-286. doi:10.1016/j.mcat.2017.10.006

Carniti, P., Gervasini, A., Bossola, F., & Dal Santo, V. (2016). Cooperative action of Brønsted and Lewis acid sites of niobium phosphate catalysts for cellobiose conversion in water. Applied Catalysis B: Environmental, 193, 93-102. doi:10.1016/j.apcatb.2016.04.012

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem