- -

Furfural Hydrogenation on Modified Niobia

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Furfural Hydrogenation on Modified Niobia

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jouve, Andrea es_ES
dc.contributor.author Cattaneo, Stefano es_ES
dc.contributor.author Delgado-Muñoz, Daniel es_ES
dc.contributor.author Scotti, Nicola es_ES
dc.contributor.author Evangelisti, Claudio es_ES
dc.contributor.author López Nieto, José Manuel es_ES
dc.contributor.author Prati, Laura es_ES
dc.date.accessioned 2020-11-04T04:32:02Z
dc.date.available 2020-11-04T04:32:02Z
dc.date.issued 2019-06-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154024
dc.description.abstract [EN] In this study, niobia-based materials have been used as supports for Pt nanoparticles and used in the hydrogenation of furfural. The incorporation of dopants (W6+ and Ti4+) in the Nb2O5 structure induced modifications in the surface acidity of the support; in particular, the addition of W6+ increased the amount of Lewis acid sites, while the addition of Ti4+ decreased the number of Lewis acid sites. As a result, the catalytic activity towards the hydrogenation of furfural was affected; high surface acidity resulted in high catalytic activity. The selectivity of the reaction changed with the support acidity as well, with higher amount of furfuryl alcohol produced decreasing the Lewis acid sites. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Platinum es_ES
dc.subject Niobia es_ES
dc.subject Niobium oxide es_ES
dc.subject Furfural es_ES
dc.subject Hydrogenation es_ES
dc.subject Furfuryl alcohol es_ES
dc.subject Pentanediol es_ES
dc.subject Lewis acid es_ES
dc.title Furfural Hydrogenation on Modified Niobia es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app9112287 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099668-B-C21/ES/VALORIZACION DE CO2: CAPTURA, Y TRANSFORMACION CATALITICA PARA ALMACENAMIENTO DE ENERGIA, COMBUSTIBLES Y PRODUCTOS QUIMICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Jouve, A.; Cattaneo, S.; Delgado-Muñoz, D.; Scotti, N.; Evangelisti, C.; López Nieto, JM.; Prati, L. (2019). Furfural Hydrogenation on Modified Niobia. Applied Sciences. 9(11):1-14. https://doi.org/10.3390/app9112287 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app9112287 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\405411 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Binder, J. B., & Raines, R. T. (2009). Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals. Journal of the American Chemical Society, 131(5), 1979-1985. doi:10.1021/ja808537j es_ES
dc.description.references Cao, Q., Guo, X., Guan, J., Mu, X., & Zhang, D. (2011). A process for efficient conversion of fructose into 5-hydroxymethylfurfural in ammonium salts. Applied Catalysis A: General, 403(1-2), 98-103. doi:10.1016/j.apcata.2011.06.018 es_ES
dc.description.references Cattaneo, S., Naslhajian, H., Somodi, F., Evangelisti, C., Villa, A., & Prati, L. (2018). Ruthenium on Carbonaceous Materials for the Selective Hydrogenation of HMF. Molecules, 23(8), 2007. doi:10.3390/molecules23082007 es_ES
dc.description.references Qi, X., Watanabe, M., Aida, T. M., & Smith, R. L. (2012). Synergistic conversion of glucose into 5-hydroxymethylfurfural in ionic liquid–water mixtures. Bioresource Technology, 109, 224-228. doi:10.1016/j.biortech.2012.01.034 es_ES
dc.description.references Ormsby, R., Kastner, J. R., & Miller, J. (2012). Hemicellulose hydrolysis using solid acid catalysts generated from biochar. Catalysis Today, 190(1), 89-97. doi:10.1016/j.cattod.2012.02.050 es_ES
dc.description.references Lavarack, B. P., Griffin, G. J., & Rodman, D. (2002). The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass and Bioenergy, 23(5), 367-380. doi:10.1016/s0961-9534(02)00066-1 es_ES
dc.description.references Carà, P. D., Pagliaro, M., Elmekawy, A., Brown, D. R., Verschuren, P., Shiju, N. R., & Rothenberg, G. (2013). Hemicellulose hydrolysis catalysed by solid acids. Catalysis Science & Technology, 3(8), 2057. doi:10.1039/c3cy20838a es_ES
dc.description.references O’Neill, R., Ahmad, M. N., Vanoye, L., & Aiouache, F. (2009). Kinetics of Aqueous Phase Dehydration of Xylose into Furfural Catalyzed by ZSM-5 Zeolite. Industrial & Engineering Chemistry Research, 48(9), 4300-4306. doi:10.1021/ie801599k es_ES
dc.description.references Weingarten, R., Cho, J., Conner, Jr., W. C., & Huber, G. W. (2010). Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating. Green Chemistry, 12(8), 1423. doi:10.1039/c003459b es_ES
dc.description.references Gómez Bernal, H., Bernazzani, L., & Raspolli Galletti, A. M. (2014). Furfural from corn stover hemicelluloses. A mineral acid-free approach. Green Chem., 16(8), 3734-3740. doi:10.1039/c4gc00450g es_ES
dc.description.references Delbecq, F., Wang, Y., Muralidhara, A., El Ouardi, K., Marlair, G., & Len, C. (2018). Hydrolysis of Hemicellulose and Derivatives—A Review of Recent Advances in the Production of Furfural. Frontiers in Chemistry, 6. doi:10.3389/fchem.2018.00146 es_ES
dc.description.references Mariscal, R., Maireles-Torres, P., Ojeda, M., Sádaba, I., & López Granados, M. (2016). Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy & Environmental Science, 9(4), 1144-1189. doi:10.1039/c5ee02666k es_ES
dc.description.references Yan, K., Wu, G., Lafleur, T., & Jarvis, C. (2014). Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renewable and Sustainable Energy Reviews, 38, 663-676. doi:10.1016/j.rser.2014.07.003 es_ES
dc.description.references Bui, L., Luo, H., Gunther, W. R., & Román-Leshkov, Y. (2013). Domino Reaction Catalyzed by Zeolites with Brønsted and Lewis Acid Sites for the Production of γ-Valerolactone from Furfural. Angewandte Chemie International Edition, 52(31), 8022-8025. doi:10.1002/anie.201302575 es_ES
dc.description.references Taylor, M. J., Durndell, L. J., Isaacs, M. A., Parlett, C. M. A., Wilson, K., Lee, A. F., & Kyriakou, G. (2016). Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions. Applied Catalysis B: Environmental, 180, 580-585. doi:10.1016/j.apcatb.2015.07.006 es_ES
dc.description.references Schäfer, H., Gruehn, R., & Schulte, F. (1966). The Modifications of Niobium Pentoxide. Angewandte Chemie International Edition in English, 5(1), 40-52. doi:10.1002/anie.196600401 es_ES
dc.description.references Allpress, J. G., Sanders, J. V., & Wadsley, A. D. (1968). Electron microscopy of high-temperature Nb2O5 and related phases. Physica Status Solidi (b), 25(2), 541-550. doi:10.1002/pssb.19680250206 es_ES
dc.description.references Jehng, J.-M., & Wachs, I. E. (1990). The molecular structures and reactivity of supported niobium oxide catalysts. Catalysis Today, 8(1), 37-55. doi:10.1016/0920-5861(90)87006-o es_ES
dc.description.references Jehng, J. M., & Wachs, I. E. (1991). Molecular structures of supported niobium oxide catalysts under in situ conditions. The Journal of Physical Chemistry, 95(19), 7373-7379. doi:10.1021/j100172a049 es_ES
dc.description.references Carniti, P., Gervasini, A., & Marzo, M. (2010). Silica–niobia oxides as viable acid catalysts in water: Effective vs. intrinsic acidity. Catalysis Today, 152(1-4), 42-47. doi:10.1016/j.cattod.2009.07.111 es_ES
dc.description.references Gupta, N. K., Fukuoka, A., & Nakajima, K. (2017). Amorphous Nb2O5 as a Selective and Reusable Catalyst for Furfural Production from Xylose in Biphasic Water and Toluene. ACS Catalysis, 7(4), 2430-2436. doi:10.1021/acscatal.6b03682 es_ES
dc.description.references Marzo, M., Gervasini, A., & Carniti, P. (2012). Improving stability of Nb2O5 catalyst in fructose dehydration reaction in water solvent by ion-doping. Catalysis Today, 192(1), 89-95. doi:10.1016/j.cattod.2011.12.014 es_ES
dc.description.references CARNITI, P., GERVASINI, A., BIELLA, S., & AUROUX, A. (2006). Niobic acid and niobium phosphate as highly acidic viable catalysts in aqueous medium: Fructose dehydration reaction. Catalysis Today, 118(3-4), 373-378. doi:10.1016/j.cattod.2006.07.024 es_ES
dc.description.references Omata, K., Izumi, S., Murayama, T., & Ueda, W. (2013). Hydrothermal synthesis of W–Nb complex metal oxides and their application to catalytic dehydration of glycerol to acrolein. Catalysis Today, 201, 7-11. doi:10.1016/j.cattod.2012.06.004 es_ES
dc.description.references García-Sancho, C., Cecilia, J. A., Moreno-Ruiz, A., Mérida-Robles, J. M., Santamaría-González, J., Moreno-Tost, R., & Maireles-Torres, P. (2015). Influence of the niobium supported species on the catalytic dehydration of glycerol to acrolein. Applied Catalysis B: Environmental, 179, 139-149. doi:10.1016/j.apcatb.2015.05.014 es_ES
dc.description.references Silva, Â., Wilson, K., Lee, A. F., dos Santos, V. C., Cons Bacilla, A. C., Mantovani, K. M., & Nakagaki, S. (2017). Nb2O5/SBA-15 catalyzed propanoic acid esterification. Applied Catalysis B: Environmental, 205, 498-504. doi:10.1016/j.apcatb.2016.12.066 es_ES
dc.description.references Noronha, F. ., Aranda, D. A. ., Ordine, A. ., & Schmal, M. (2000). The promoting effect of Nb2O5 addition to Pd/Al2O3 catalysts on propane oxidation. Catalysis Today, 57(3-4), 275-282. doi:10.1016/s0920-5861(99)00337-5 es_ES
dc.description.references Molina, M. J. C., Granados, M. L., Gervasini, A., & Carniti, P. (2015). Exploitment of niobium oxide effective acidity for xylose dehydration to furfural. Catalysis Today, 254, 90-98. doi:10.1016/j.cattod.2015.01.018 es_ES
dc.description.references Stošić, D., Bennici, S., Rakić, V., & Auroux, A. (2012). CeO2–Nb2O5 mixed oxide catalysts: Preparation, characterization and catalytic activity in fructose dehydration reaction. Catalysis Today, 192(1), 160-168. doi:10.1016/j.cattod.2011.10.040 es_ES
dc.description.references Stošić, D., Bennici, S., Pavlović, V., Rakić, V., & Auroux, A. (2014). Tuning the acidity of niobia: Characterization and catalytic activity of Nb2O5–MeO2 (Me = Ti, Zr, Ce) mesoporous mixed oxides. Materials Chemistry and Physics, 146(3), 337-345. doi:10.1016/j.matchemphys.2014.03.033 es_ES
dc.description.references Li, H., Fang, Z., Smith, R. L., & Yang, S. (2016). Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Progress in Energy and Combustion Science, 55, 98-194. doi:10.1016/j.pecs.2016.04.004 es_ES
dc.description.references Evangelisti, C., Aronica, L. A., Botavina, M., Martra, G., Battocchio, C., & Polzonetti, G. (2013). Chemoselective hydrogenation of halonitroaromatics over γ-Fe2O3-supported platinum nanoparticles: The role of the support on their catalytic activity and selectivity. Journal of Molecular Catalysis A: Chemical, 366, 288-293. doi:10.1016/j.molcata.2012.10.007 es_ES
dc.description.references Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145 es_ES
dc.description.references Oberhauser, W., Evangelisti, C., Jumde, R. P., Psaro, R., Vizza, F., Bevilacqua, M., … Serp, P. (2015). Platinum on carbonaceous supports for glycerol hydrogenolysis: Support effect. Journal of Catalysis, 325, 111-117. doi:10.1016/j.jcat.2015.03.003 es_ES
dc.description.references Oberhauser, W., Evangelisti, C., Tiozzo, C., Vizza, F., & Psaro, R. (2016). Lactic Acid from Glycerol by Ethylene-Stabilized Platinum-Nanoparticles. ACS Catalysis, 6(3), 1671-1674. doi:10.1021/acscatal.5b02914 es_ES
dc.description.references La Salvia, N., Delgado, D., Ruiz-Rodríguez, L., Nadji, L., Massó, A., & Nieto, J. M. L. (2017). V- and Nb-containing tungsten bronzes catalysts for the aerobic transformation of ethanol and glycerol. Bulk and supported materials. Catalysis Today, 296, 2-9. doi:10.1016/j.cattod.2017.04.009 es_ES
dc.description.references Fernández-Arroyo, A., Delgado, D., Domine, M. E., & López-Nieto, J. M. (2017). Upgrading of oxygenated compounds present in aqueous biomass-derived feedstocks over NbOx-based catalysts. Catalysis Science & Technology, 7(23), 5495-5499. doi:10.1039/c7cy00916j es_ES
dc.description.references Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751-767. doi:10.1107/s0567739476001551 es_ES
dc.description.references Botella, P., Solsona, B., López Nieto, J. M., Concepción, P., Jordá, J. L., & Doménech-Carbó, M. T. (2010). Mo–W-containing tetragonal tungsten bronzes through isomorphic substitution of molybdenum by tungsten. Catalysis Today, 158(1-2), 162-169. doi:10.1016/j.cattod.2010.05.024 es_ES
dc.description.references Jehng, J. M., & Wachs, I. E. (1991). Structural chemistry and Raman spectra of niobium oxides. Chemistry of Materials, 3(1), 100-107. doi:10.1021/cm00013a025 es_ES
dc.description.references Delgado, D., Fernández-Arroyo, A., Domine, M. E., García-González, E., & López Nieto, J. M. (2019). W–Nb–O oxides with tunable acid properties as efficient catalysts for the transformation of biomass-derived oxygenates in aqueous systems. Catalysis Science & Technology, 9(12), 3126-3136. doi:10.1039/c9cy00367c es_ES
dc.description.references Scotti, N., Dangate, M., Gervasini, A., Evangelisti, C., Ravasio, N., & Zaccheria, F. (2014). Unraveling the Role of Low Coordination Sites in a Cu Metal Nanoparticle: A Step toward the Selective Synthesis of Second Generation Biofuels. ACS Catalysis, 4(8), 2818-2826. doi:10.1021/cs500581a es_ES
dc.description.references Crépeau, G., Montouillout, V., Vimont, A., Mariey, L., Cseri, T., & Maugé, F. (2006). Nature, Structure and Strength of the Acidic Sites of Amorphous Silica Alumina:  An IR and NMR Study. The Journal of Physical Chemistry B, 110(31), 15172-15185. doi:10.1021/jp062252d es_ES
dc.description.references Ravindra Reddy, C., Nagendrappa, G., & Jai Prakash, B. S. (2007). Surface acidity study of M+-montmorillonite clay catalysts by FT-IR spectroscopy: Correlation with esterification activity. Catalysis Communications, 8(3), 241-246. doi:10.1016/j.catcom.2006.06.023 es_ES
dc.description.references Gervasini, A., Carniti, P., Bossola, F., Imparato, C., Pernice, P., Clayden, N. J., & Aronne, A. (2018). New Nb-P-Si ternary oxide materials and their use in heterogeneous acid catalysis. Molecular Catalysis, 458, 280-286. doi:10.1016/j.mcat.2017.10.006 es_ES
dc.description.references Carniti, P., Gervasini, A., Bossola, F., & Dal Santo, V. (2016). Cooperative action of Brønsted and Lewis acid sites of niobium phosphate catalysts for cellobiose conversion in water. Applied Catalysis B: Environmental, 193, 93-102. doi:10.1016/j.apcatb.2016.04.012 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem