- -

Aerogel-based metasurfaces for perfect acoustic energy absorption

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Aerogel-based metasurfaces for perfect acoustic energy absorption

Mostrar el registro completo del ítem

Fernandez-Marin, AA.; Jimenez, N.; Groby, J.; Sánchez-Dehesa Moreno-Cid, J.; Romero García, V. (2019). Aerogel-based metasurfaces for perfect acoustic energy absorption. Applied Physics Letters. 115(6):061901-1-061901-5. https://doi.org/10.1063/1.5109084

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/154028

Ficheros en el ítem

Metadatos del ítem

Título: Aerogel-based metasurfaces for perfect acoustic energy absorption
Autor: Fernandez-Marin, Antonio A. Jimenez, Noe Groby, Jean-Philippe Sánchez-Dehesa Moreno-Cid, José Romero García, Vicente
Entidad UPV: Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Fecha difusión:
Resumen:
[EN] The unusual viscoelastic properties of silica aerogel plates are efficiently used to design subwavelength perfect sound absorbers. We theoretically, numerically and experimentally report a perfect absorbing metamaterial ...[+]
Palabras clave: Metamaterials , Aerogel
Derechos de uso: Reserva de todos los derechos
Fuente:
Applied Physics Letters. (issn: 0003-6951 )
DOI: 10.1063/1.5109084
Editorial:
American Institute of Physics
Versión del editor: https://doi.org/10.1063/1.5109084
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TEC2014-53088-C3-1-R/ES/DISPOSITIVOS PASIVOS BASADOS EN MATERIALES FUNCIONALES AVANZADOS CON RESONADORES DE ALTAS PRESTACIONES/
info:eu-repo/grantAgreement/ANR//ANR-18-CE08-0021/FR/METARoom: deep subwavelength reconfigurable acoustic treatments for room acoustics/METARoom/
info:eu-repo/grantAgreement/COST//CA15125/EU/Designs for Noise Reducing Materials and Structures (DENORMS)/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F042/
Agradecimientos:
This work was funded by the RFI Le Mans Acoustique, Region Pays de la Loire. This article is based upon work from COST Action DENORMS CA15125, supported by COST (European Cooperation in Science and Technology). N.J. ...[+]
Tipo: Artículo

References

Gesser, H. D., & Goswami, P. C. (1989). Aerogels and related porous materials. Chemical Reviews, 89(4), 765-788. doi:10.1021/cr00094a003

Herrmann, G., Iden, R., Mielke, M., Teich, F., & Ziegler, B. (1995). On the way to commercial production of silica aerogel. Journal of Non-Crystalline Solids, 186, 380-387. doi:10.1016/0022-3093(95)90076-4

Fricke, J., Lu, X., Wang, P., Büttner, D., & Heinemann, U. (1992). Optimization of monolithic silica aerogel insulants. International Journal of Heat and Mass Transfer, 35(9), 2305-2309. doi:10.1016/0017-9310(92)90073-2 [+]
Gesser, H. D., & Goswami, P. C. (1989). Aerogels and related porous materials. Chemical Reviews, 89(4), 765-788. doi:10.1021/cr00094a003

Herrmann, G., Iden, R., Mielke, M., Teich, F., & Ziegler, B. (1995). On the way to commercial production of silica aerogel. Journal of Non-Crystalline Solids, 186, 380-387. doi:10.1016/0022-3093(95)90076-4

Fricke, J., Lu, X., Wang, P., Büttner, D., & Heinemann, U. (1992). Optimization of monolithic silica aerogel insulants. International Journal of Heat and Mass Transfer, 35(9), 2305-2309. doi:10.1016/0017-9310(92)90073-2

Gerlach, R., Kraus, O., Fricke, J., Eccardt, P.-C., Kroemer, N., & Magori, V. (1992). Modified SiO2 aerogels as acoustic impedance matching layers in ultrasonic devices. Journal of Non-Crystalline Solids, 145, 227-232. doi:10.1016/s0022-3093(05)80461-2

Gibiat, V., Lefeuvre, O., Woignier, T., Pelous, J., & Phalippou, J. (1995). Acoustic properties and potential applications of silica aerogels. Journal of Non-Crystalline Solids, 186, 244-255. doi:10.1016/0022-3093(95)00049-6

Ma, G., Yang, M., Xiao, S., Yang, Z., & Sheng, P. (2014). Acoustic metasurface with hybrid resonances. Nature Materials, 13(9), 873-878. doi:10.1038/nmat3994

Yang, M., Meng, C., Fu, C., Li, Y., Yang, Z., & Sheng, P. (2015). Subwavelength total acoustic absorption with degenerate resonators. Applied Physics Letters, 107(10), 104104. doi:10.1063/1.4930944

Romero-García, V., Theocharis, G., Richoux, O., Merkel, A., Tournat, V., & Pagneux, V. (2016). Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Scientific Reports, 6(1). doi:10.1038/srep19519

Li, Y., & Assouar, B. M. (2016). Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Applied Physics Letters, 108(6), 063502. doi:10.1063/1.4941338

Jiménez, N., Huang, W., Romero-García, V., Pagneux, V., & Groby, J.-P. (2016). Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Applied Physics Letters, 109(12), 121902. doi:10.1063/1.4962328

Peng, X., Ji, J., & Jing, Y. (2018). Composite honeycomb metasurface panel for broadband sound absorption. The Journal of the Acoustical Society of America, 144(4), EL255-EL261. doi:10.1121/1.5055847

Yang, M., Ma, G., Yang, Z., & Sheng, P. (2013). Coupled Membranes with Doubly Negative Mass Density and Bulk Modulus. Physical Review Letters, 110(13). doi:10.1103/physrevlett.110.134301

Yang, Z., Mei, J., Yang, M., Chan, N. H., & Sheng, P. (2008). Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass. Physical Review Letters, 101(20). doi:10.1103/physrevlett.101.204301

Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G., & Kim, C. K. (2010). Composite Acoustic Medium with Simultaneously Negative Density and Modulus. Physical Review Letters, 104(5). doi:10.1103/physrevlett.104.054301

Zhang, J., Romero-García, V., Theocharis, G., Richoux, O., Achilleos, V., & Frantzeskakis, D. (2016). Second-Harmonic Generation in Membrane-Type Nonlinear Acoustic Metamaterials. Crystals, 6(8), 86. doi:10.3390/cryst6080086

Zhang, J., Romero-García, V., Theocharis, G., Richoux, O., Achilleos, V., & Frantzeskakis, D. J. (2017). Bright and gap solitons in membrane-type acoustic metamaterials. Physical Review E, 96(2). doi:10.1103/physreve.96.022214

Stinson, M. R. (1991). The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape. The Journal of the Acoustical Society of America, 89(2), 550-558. doi:10.1121/1.400379

Kergomard, J., & Garcia, A. (1987). Simple discontinuities in acoustic waveguides at low frequencies: Critical analysis and formulae. Journal of Sound and Vibration, 114(3), 465-479. doi:10.1016/s0022-460x(87)80017-2

M. J. Powell , in Numerical Analysis ( Springer, 1978) pp. 144–157.

Groby, J.-P., Huang, W., Lardeau, A., & Aurégan, Y. (2015). The use of slow waves to design simple sound absorbing materials. Journal of Applied Physics, 117(12), 124903. doi:10.1063/1.4915115

Jiménez, N., Groby, J.-P., Pagneux, V., & Romero-García, V. (2017). Iridescent Perfect Absorption in Critically-Coupled Acoustic Metamaterials Using the Transfer Matrix Method. Applied Sciences, 7(6), 618. doi:10.3390/app7060618

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem