- -

Aerogel-based metasurfaces for perfect acoustic energy absorption

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Aerogel-based metasurfaces for perfect acoustic energy absorption

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fernandez-Marin, Antonio A. es_ES
dc.contributor.author Jimenez, Noe es_ES
dc.contributor.author Groby, Jean-Philippe es_ES
dc.contributor.author Sánchez-Dehesa Moreno-Cid, José es_ES
dc.contributor.author Romero García, Vicente es_ES
dc.date.accessioned 2020-11-04T04:32:14Z
dc.date.available 2020-11-04T04:32:14Z
dc.date.issued 2019-08-05 es_ES
dc.identifier.issn 0003-6951 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154028
dc.description.abstract [EN] The unusual viscoelastic properties of silica aerogel plates are efficiently used to design subwavelength perfect sound absorbers. We theoretically, numerically and experimentally report a perfect absorbing metamaterial panel made of periodically arranged resonant building blocks consisting of a slit loaded by a clamped aerogel plate backed by a closed cavity. The impedance matching condition is analyzed using the Argand diagram of the reflection coefficient, i.e., the trajectory of the reflection coefficient as a function of frequency in the complex plane. The lack or excess of losses in the system can be identified via this Argrand diagram in order to achieve the impedance matching condition. The universality of this tool can be further exploited to design more complex metasurfaces for perfect sound absorption, thus allowing the rapid design of novel and efficient absorbing metamaterials. es_ES
dc.description.sponsorship This work was funded by the RFI Le Mans Acoustique, Region Pays de la Loire. This article is based upon work from COST Action DENORMS CA15125, supported by COST (European Cooperation in Science and Technology). N.J. acknowledges financial support from Generalitat Valenciana through Grant No. APOSTD/2017/042. J.-P.G and V.R.G. gratefully acknowledge the ANR-RGC METARoom (No. ANR-18-CE08-0021) project and the HYPERMETA project funded under the program Etoiles Montantes of the Region Pays de la Loire. J.S-D. acknowledges the support of the Ministerio de Economia y Competitividad of the Spanish government and the European Union FEDER through Project No. TEC2014-53088-C3-1-R es_ES
dc.language Inglés es_ES
dc.publisher American Institute of Physics es_ES
dc.relation.ispartof Applied Physics Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Metamaterials es_ES
dc.subject Aerogel es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Aerogel-based metasurfaces for perfect acoustic energy absorption es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.5109084 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-53088-C3-1-R/ES/DISPOSITIVOS PASIVOS BASADOS EN MATERIALES FUNCIONALES AVANZADOS CON RESONADORES DE ALTAS PRESTACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-18-CE08-0021/FR/METARoom: deep subwavelength reconfigurable acoustic treatments for room acoustics/METARoom/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//CA15125/EU/Designs for Noise Reducing Materials and Structures (DENORMS)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F042/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.description.bibliographicCitation Fernandez-Marin, AA.; Jimenez, N.; Groby, J.; Sánchez-Dehesa Moreno-Cid, J.; Romero García, V. (2019). Aerogel-based metasurfaces for perfect acoustic energy absorption. Applied Physics Letters. 115(6):061901-1-061901-5. https://doi.org/10.1063/1.5109084 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1063/1.5109084 es_ES
dc.description.upvformatpinicio 061901-1 es_ES
dc.description.upvformatpfin 061901-5 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 115 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\394050 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Region Pays de la Loire es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.description.references Gesser, H. D., & Goswami, P. C. (1989). Aerogels and related porous materials. Chemical Reviews, 89(4), 765-788. doi:10.1021/cr00094a003 es_ES
dc.description.references Herrmann, G., Iden, R., Mielke, M., Teich, F., & Ziegler, B. (1995). On the way to commercial production of silica aerogel. Journal of Non-Crystalline Solids, 186, 380-387. doi:10.1016/0022-3093(95)90076-4 es_ES
dc.description.references Fricke, J., Lu, X., Wang, P., Büttner, D., & Heinemann, U. (1992). Optimization of monolithic silica aerogel insulants. International Journal of Heat and Mass Transfer, 35(9), 2305-2309. doi:10.1016/0017-9310(92)90073-2 es_ES
dc.description.references Gerlach, R., Kraus, O., Fricke, J., Eccardt, P.-C., Kroemer, N., & Magori, V. (1992). Modified SiO2 aerogels as acoustic impedance matching layers in ultrasonic devices. Journal of Non-Crystalline Solids, 145, 227-232. doi:10.1016/s0022-3093(05)80461-2 es_ES
dc.description.references Gibiat, V., Lefeuvre, O., Woignier, T., Pelous, J., & Phalippou, J. (1995). Acoustic properties and potential applications of silica aerogels. Journal of Non-Crystalline Solids, 186, 244-255. doi:10.1016/0022-3093(95)00049-6 es_ES
dc.description.references Ma, G., Yang, M., Xiao, S., Yang, Z., & Sheng, P. (2014). Acoustic metasurface with hybrid resonances. Nature Materials, 13(9), 873-878. doi:10.1038/nmat3994 es_ES
dc.description.references Yang, M., Meng, C., Fu, C., Li, Y., Yang, Z., & Sheng, P. (2015). Subwavelength total acoustic absorption with degenerate resonators. Applied Physics Letters, 107(10), 104104. doi:10.1063/1.4930944 es_ES
dc.description.references Romero-García, V., Theocharis, G., Richoux, O., Merkel, A., Tournat, V., & Pagneux, V. (2016). Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Scientific Reports, 6(1). doi:10.1038/srep19519 es_ES
dc.description.references Li, Y., & Assouar, B. M. (2016). Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Applied Physics Letters, 108(6), 063502. doi:10.1063/1.4941338 es_ES
dc.description.references Jiménez, N., Huang, W., Romero-García, V., Pagneux, V., & Groby, J.-P. (2016). Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Applied Physics Letters, 109(12), 121902. doi:10.1063/1.4962328 es_ES
dc.description.references Peng, X., Ji, J., & Jing, Y. (2018). Composite honeycomb metasurface panel for broadband sound absorption. The Journal of the Acoustical Society of America, 144(4), EL255-EL261. doi:10.1121/1.5055847 es_ES
dc.description.references Yang, M., Ma, G., Yang, Z., & Sheng, P. (2013). Coupled Membranes with Doubly Negative Mass Density and Bulk Modulus. Physical Review Letters, 110(13). doi:10.1103/physrevlett.110.134301 es_ES
dc.description.references Yang, Z., Mei, J., Yang, M., Chan, N. H., & Sheng, P. (2008). Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass. Physical Review Letters, 101(20). doi:10.1103/physrevlett.101.204301 es_ES
dc.description.references Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G., & Kim, C. K. (2010). Composite Acoustic Medium with Simultaneously Negative Density and Modulus. Physical Review Letters, 104(5). doi:10.1103/physrevlett.104.054301 es_ES
dc.description.references Zhang, J., Romero-García, V., Theocharis, G., Richoux, O., Achilleos, V., & Frantzeskakis, D. (2016). Second-Harmonic Generation in Membrane-Type Nonlinear Acoustic Metamaterials. Crystals, 6(8), 86. doi:10.3390/cryst6080086 es_ES
dc.description.references Zhang, J., Romero-García, V., Theocharis, G., Richoux, O., Achilleos, V., & Frantzeskakis, D. J. (2017). Bright and gap solitons in membrane-type acoustic metamaterials. Physical Review E, 96(2). doi:10.1103/physreve.96.022214 es_ES
dc.description.references Stinson, M. R. (1991). The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape. The Journal of the Acoustical Society of America, 89(2), 550-558. doi:10.1121/1.400379 es_ES
dc.description.references Kergomard, J., & Garcia, A. (1987). Simple discontinuities in acoustic waveguides at low frequencies: Critical analysis and formulae. Journal of Sound and Vibration, 114(3), 465-479. doi:10.1016/s0022-460x(87)80017-2 es_ES
dc.description.references M. J. Powell , in Numerical Analysis ( Springer, 1978) pp. 144–157. es_ES
dc.description.references Groby, J.-P., Huang, W., Lardeau, A., & Aurégan, Y. (2015). The use of slow waves to design simple sound absorbing materials. Journal of Applied Physics, 117(12), 124903. doi:10.1063/1.4915115 es_ES
dc.description.references Jiménez, N., Groby, J.-P., Pagneux, V., & Romero-García, V. (2017). Iridescent Perfect Absorption in Critically-Coupled Acoustic Metamaterials Using the Transfer Matrix Method. Applied Sciences, 7(6), 618. doi:10.3390/app7060618 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem