- -

Heuristic Techniques for the Design of Steel-Concrete Composite Pedestrian Bridges

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Heuristic Techniques for the Design of Steel-Concrete Composite Pedestrian Bridges

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Yepes, V. es_ES
dc.contributor.author Dasí-Gil, M. es_ES
dc.contributor.author Martínez-Muñoz, D. es_ES
dc.contributor.author López Desfilis, Vicente José es_ES
dc.contributor.author Martí Albiñana, José Vicente es_ES
dc.date.accessioned 2020-11-04T04:32:20Z
dc.date.available 2020-11-04T04:32:20Z
dc.date.issued 2019-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154030
dc.description.abstract [EN] The objective of this work was to apply heuristic optimization techniques to a steel-concrete composite pedestrian bridge, modeled like a beam on two supports. A program has been developed in Fortran programming language, capable of generating pedestrian bridges, checking them, and evaluating their cost. The following algorithms were implemented: descent local search (DLS), a hybrid simulated annealing with a mutation operator (SAMO2), and a glow-worms swarm optimization (GSO) in two variants. The first one only considers the GSO and the second combines GSO and DLS, applying the DSL heuristic to the best solutions obtained by the GSO. The results were compared according to the lowest cost. The GSO and DLS algorithms combined obtained the best results in terms of cost. Furthermore, a comparison between the CO2 emissions associated with the amount of materials obtained by every heuristic technique and the original design solution were studied. Finally, a parametric study was carried out according to the span length of the pedestrian bridge. es_ES
dc.description.sponsorship The authors acknowledge the financial support of the Spanish Ministry of Economy and Business, along with FEDER funding (DIMALIFE Project: BIA2017-85098-R). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Pedestrian bridge es_ES
dc.subject Composite structures es_ES
dc.subject Optimization es_ES
dc.subject Metaheuristics es_ES
dc.subject Structural design es_ES
dc.subject.classification MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Heuristic Techniques for the Design of Steel-Concrete Composite Pedestrian Bridges es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app9163253 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures es_ES
dc.description.bibliographicCitation Yepes, V.; Dasí-Gil, M.; Martínez-Muñoz, D.; López Desfilis, VJ.; Martí Albiñana, JV. (2019). Heuristic Techniques for the Design of Steel-Concrete Composite Pedestrian Bridges. Applied Sciences. 9(16):1-18. https://doi.org/10.3390/app9163253 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app9163253 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 16 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\392524 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Liu, S., Tao, R., & Tam, C. M. (2013). Optimizing cost and CO2 emission for construction projects using particle swarm optimization. Habitat International, 37, 155-162. doi:10.1016/j.habitatint.2011.12.012 es_ES
dc.description.references Sarma, K. C., & Adeli, H. (1998). Cost Optimization of Concrete Structures. Journal of Structural Engineering, 124(5), 570-578. doi:10.1061/(asce)0733-9445(1998)124:5(570) es_ES
dc.description.references Adeli, H., & Kim, H. (2001). Cost optimization of composite floors using neural dynamics model. Communications in Numerical Methods in Engineering, 17(11), 771-787. doi:10.1002/cnm.448 es_ES
dc.description.references Kravanja, S., & Šilih, S. (2003). Optimization based comparison between composite I beams and composite trusses. Journal of Constructional Steel Research, 59(5), 609-625. doi:10.1016/s0143-974x(02)00045-7 es_ES
dc.description.references Senouci, A. B., & Al-Ansari, M. S. (2009). Cost optimization of composite beams using genetic algorithms. Advances in Engineering Software, 40(11), 1112-1118. doi:10.1016/j.advengsoft.2009.06.001 es_ES
dc.description.references Kaveh, A., & Shakouri Mahmud Abadi, A. (2010). Cost optimization of a composite floor system using an improved harmony search algorithm. Journal of Constructional Steel Research, 66(5), 664-669. doi:10.1016/j.jcsr.2010.01.009 es_ES
dc.description.references Ramires, F. B., Andrade, S. A. L. de, Vellasco, P. C. G. da S., & Lima, L. R. O. de. (2012). Genetic algorithm optimization of composite and steel endplate semi-rigid joints. Engineering Structures, 45, 177-191. doi:10.1016/j.engstruct.2012.05.051 es_ES
dc.description.references Martí, J. V., Gonzalez-Vidosa, F., Yepes, V., & Alcalá, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures, 48, 342-352. doi:10.1016/j.engstruct.2012.09.014 es_ES
dc.description.references García-Segura, T., & Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325-336. doi:10.1016/j.engstruct.2016.07.012 es_ES
dc.description.references García-Segura, T., Yepes, V., & Frangopol, D. M. (2017). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, 56(1), 139-150. doi:10.1007/s00158-017-1653-0 es_ES
dc.description.references Soke, A., & Bingul, Z. (2006). Hybrid genetic algorithm and simulated annealing for two-dimensional non-guillotine rectangular packing problems. Engineering Applications of Artificial Intelligence, 19(5), 557-567. doi:10.1016/j.engappai.2005.12.003 es_ES
dc.description.references Penadés-Plà, V., García-Segura, T., & Yepes, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179, 556-565. doi:10.1016/j.engstruct.2018.11.015 es_ES
dc.description.references Yepes, V., García-Segura, T., & Moreno-Jiménez, J. M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024-1036. doi:10.1016/j.acme.2015.05.001 es_ES
dc.description.references Martí, J. V., García-Segura, T., & Yepes, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120, 231-240. doi:10.1016/j.jclepro.2016.02.024 es_ES
dc.description.references García-Segura, T., Yepes, V., Frangopol, D. M., & Yang, D. Y. (2017). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391. doi:10.1016/j.engstruct.2017.05.013 es_ES
dc.description.references Penadés-Plà, V., García-Segura, T., Martí, J., & Yepes, V. (2016). A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design. Sustainability, 8(12), 1295. doi:10.3390/su8121295 es_ES
dc.description.references BEDEC ITEC Materials Database https://metabase.itec.cat/vide/es/bedec es_ES
dc.description.references Yepes, V., Martí, J. V., & García-Segura, T. (2015). Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49, 123-134. doi:10.1016/j.autcon.2014.10.013 es_ES
dc.description.references Molina-Moreno, F., Martí, J. V., & Yepes, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: Implications for low-carbon conceptual designs. Journal of Cleaner Production, 164, 872-884. doi:10.1016/j.jclepro.2017.06.246 es_ES
dc.description.references Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671 es_ES
dc.description.references Medina, J. R. (2001). Estimation of Incident and Reflected Waves Using Simulated Annealing. Journal of Waterway, Port, Coastal, and Ocean Engineering, 127(4), 213-221. doi:10.1061/(asce)0733-950x(2001)127:4(213) es_ES
dc.description.references Krishnanand, K. N., & Ghose, D. (2009). Glowworm swarm optimisation: a new method for optimising multi-modal functions. International Journal of Computational Intelligence Studies, 1(1), 93. doi:10.1504/ijcistudies.2009.025340 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem