- -

Heuristic Techniques for the Design of Steel-Concrete Composite Pedestrian Bridges

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Heuristic Techniques for the Design of Steel-Concrete Composite Pedestrian Bridges

Mostrar el registro completo del ítem

Yepes, V.; Dasí-Gil, M.; Martínez-Muñoz, D.; López Desfilis, VJ.; Martí Albiñana, JV. (2019). Heuristic Techniques for the Design of Steel-Concrete Composite Pedestrian Bridges. Applied Sciences. 9(16):1-18. https://doi.org/10.3390/app9163253

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/154030

Ficheros en el ítem

Metadatos del ítem

Título: Heuristic Techniques for the Design of Steel-Concrete Composite Pedestrian Bridges
Autor: Yepes, V. Dasí-Gil, M. Martínez-Muñoz, D. López Desfilis, Vicente José Martí Albiñana, José Vicente
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures
Fecha difusión:
Resumen:
[EN] The objective of this work was to apply heuristic optimization techniques to a steel-concrete composite pedestrian bridge, modeled like a beam on two supports. A program has been developed in Fortran programming ...[+]
Palabras clave: Pedestrian bridge , Composite structures , Optimization , Metaheuristics , Structural design
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app9163253
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/app9163253
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/
Agradecimientos:
The authors acknowledge the financial support of the Spanish Ministry of Economy and Business, along with FEDER funding (DIMALIFE Project: BIA2017-85098-R).
Tipo: Artículo

References

Liu, S., Tao, R., & Tam, C. M. (2013). Optimizing cost and CO2 emission for construction projects using particle swarm optimization. Habitat International, 37, 155-162. doi:10.1016/j.habitatint.2011.12.012

Sarma, K. C., & Adeli, H. (1998). Cost Optimization of Concrete Structures. Journal of Structural Engineering, 124(5), 570-578. doi:10.1061/(asce)0733-9445(1998)124:5(570)

Adeli, H., & Kim, H. (2001). Cost optimization of composite floors using neural dynamics model. Communications in Numerical Methods in Engineering, 17(11), 771-787. doi:10.1002/cnm.448 [+]
Liu, S., Tao, R., & Tam, C. M. (2013). Optimizing cost and CO2 emission for construction projects using particle swarm optimization. Habitat International, 37, 155-162. doi:10.1016/j.habitatint.2011.12.012

Sarma, K. C., & Adeli, H. (1998). Cost Optimization of Concrete Structures. Journal of Structural Engineering, 124(5), 570-578. doi:10.1061/(asce)0733-9445(1998)124:5(570)

Adeli, H., & Kim, H. (2001). Cost optimization of composite floors using neural dynamics model. Communications in Numerical Methods in Engineering, 17(11), 771-787. doi:10.1002/cnm.448

Kravanja, S., & Šilih, S. (2003). Optimization based comparison between composite I beams and composite trusses. Journal of Constructional Steel Research, 59(5), 609-625. doi:10.1016/s0143-974x(02)00045-7

Senouci, A. B., & Al-Ansari, M. S. (2009). Cost optimization of composite beams using genetic algorithms. Advances in Engineering Software, 40(11), 1112-1118. doi:10.1016/j.advengsoft.2009.06.001

Kaveh, A., & Shakouri Mahmud Abadi, A. (2010). Cost optimization of a composite floor system using an improved harmony search algorithm. Journal of Constructional Steel Research, 66(5), 664-669. doi:10.1016/j.jcsr.2010.01.009

Ramires, F. B., Andrade, S. A. L. de, Vellasco, P. C. G. da S., & Lima, L. R. O. de. (2012). Genetic algorithm optimization of composite and steel endplate semi-rigid joints. Engineering Structures, 45, 177-191. doi:10.1016/j.engstruct.2012.05.051

Martí, J. V., Gonzalez-Vidosa, F., Yepes, V., & Alcalá, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures, 48, 342-352. doi:10.1016/j.engstruct.2012.09.014

García-Segura, T., & Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325-336. doi:10.1016/j.engstruct.2016.07.012

García-Segura, T., Yepes, V., & Frangopol, D. M. (2017). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, 56(1), 139-150. doi:10.1007/s00158-017-1653-0

Soke, A., & Bingul, Z. (2006). Hybrid genetic algorithm and simulated annealing for two-dimensional non-guillotine rectangular packing problems. Engineering Applications of Artificial Intelligence, 19(5), 557-567. doi:10.1016/j.engappai.2005.12.003

Penadés-Plà, V., García-Segura, T., & Yepes, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179, 556-565. doi:10.1016/j.engstruct.2018.11.015

Yepes, V., García-Segura, T., & Moreno-Jiménez, J. M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024-1036. doi:10.1016/j.acme.2015.05.001

Martí, J. V., García-Segura, T., & Yepes, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120, 231-240. doi:10.1016/j.jclepro.2016.02.024

García-Segura, T., Yepes, V., Frangopol, D. M., & Yang, D. Y. (2017). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391. doi:10.1016/j.engstruct.2017.05.013

Penadés-Plà, V., García-Segura, T., Martí, J., & Yepes, V. (2016). A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design. Sustainability, 8(12), 1295. doi:10.3390/su8121295

BEDEC ITEC Materials Database https://metabase.itec.cat/vide/es/bedec

Yepes, V., Martí, J. V., & García-Segura, T. (2015). Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49, 123-134. doi:10.1016/j.autcon.2014.10.013

Molina-Moreno, F., Martí, J. V., & Yepes, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: Implications for low-carbon conceptual designs. Journal of Cleaner Production, 164, 872-884. doi:10.1016/j.jclepro.2017.06.246

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671

Medina, J. R. (2001). Estimation of Incident and Reflected Waves Using Simulated Annealing. Journal of Waterway, Port, Coastal, and Ocean Engineering, 127(4), 213-221. doi:10.1061/(asce)0733-950x(2001)127:4(213)

Krishnanand, K. N., & Ghose, D. (2009). Glowworm swarm optimisation: a new method for optimising multi-modal functions. International Journal of Computational Intelligence Studies, 1(1), 93. doi:10.1504/ijcistudies.2009.025340

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem