- -

Hygrothermal Behaviour of Continuous Air Chambers on Stone Panels Façades through CFD and IRT

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Hygrothermal Behaviour of Continuous Air Chambers on Stone Panels Façades through CFD and IRT

Show full item record

Lerma Elvira, C.; Mas Tomas, MDLA.; Gil Benso, E.; Vercher Sanchis, J. (2019). Hygrothermal Behaviour of Continuous Air Chambers on Stone Panels Façades through CFD and IRT. Applied Sciences. 9(15):1-15. https://doi.org/10.3390/app9153001

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/154036

Files in this item

Item Metadata

Title: Hygrothermal Behaviour of Continuous Air Chambers on Stone Panels Façades through CFD and IRT
Author: Lerma Elvira, Carlos Mas Tomas, Maria De Los Angeles Gil Benso, Enrique Vercher Sanchis, José
UPV Unit: Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures
Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques
Issued date:
Abstract:
[EN] Facades of buildings with stone cladding are widely used in contemporary architecture. This research work analyses the aerodynamic, thermal and relative humidity behaviour of this type of facade. One of the main ...[+]
Subjects: CFD , IRT , Air chamber , Stone panels , Building materials , Finite elements , Natural convection
Copyrigths: Reconocimiento (by)
Source:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app9153001
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/app9153001
Type: Artículo

References

De Vahl Davis, G. (1983). Natural convection of air in a square cavity: A bench mark numerical solution. International Journal for Numerical Methods in Fluids, 3(3), 249-264. doi:10.1002/fld.1650030305

Kaminski, D. A., & Prakash, C. (1986). Conjugate natural convection in a square enclosure: effect of conduction in one of the vertical walls. International Journal of Heat and Mass Transfer, 29(12), 1979-1988. doi:10.1016/0017-9310(86)90017-7

Du, Z.-G., & Bilgen, E. (1992). Coupling of wall conduction with natural convection in a rectangular enclosure. International Journal of Heat and Mass Transfer, 35(8), 1969-1975. doi:10.1016/0017-9310(92)90199-3 [+]
De Vahl Davis, G. (1983). Natural convection of air in a square cavity: A bench mark numerical solution. International Journal for Numerical Methods in Fluids, 3(3), 249-264. doi:10.1002/fld.1650030305

Kaminski, D. A., & Prakash, C. (1986). Conjugate natural convection in a square enclosure: effect of conduction in one of the vertical walls. International Journal of Heat and Mass Transfer, 29(12), 1979-1988. doi:10.1016/0017-9310(86)90017-7

Du, Z.-G., & Bilgen, E. (1992). Coupling of wall conduction with natural convection in a rectangular enclosure. International Journal of Heat and Mass Transfer, 35(8), 1969-1975. doi:10.1016/0017-9310(92)90199-3

Hakyemez, E., Mobedi, M., & Öztop, H. F. (2008). Effects of Wall-Located Heat Barrier on Conjugate Conduction/Natural-Convection Heat Transfer and Fluid Flow in Enclosures. Numerical Heat Transfer, Part A: Applications, 54(2), 197-220. doi:10.1080/10407780802084447

Kuehn, T. H., & Maldonado, E. A. B. (1984). Two-dimensional transient heat transfer through composite wood frame walls — Field measurements and modeling. Energy and Buildings, 6(1), 55-66. doi:10.1016/0378-7788(84)90007-0

Al-Sanea, S. A., & Zedan, M. F. (2012). Effect of thermal bridges on transmission loads and thermal resistance of building walls under dynamic conditions. Applied Energy, 98, 584-593. doi:10.1016/j.apenergy.2012.04.038

Vercher, J., Lerma, C., Vidal, M., & Gil, E. (2013). Analysis of Energy Efficiency in Construction Solutions at the Façade-Slab Connection. Advanced Materials Research, 787, 731-735. doi:10.4028/www.scientific.net/amr.787.731

Mas, Á., Gutiérrez, J., Gil, E., Gil, A., & Galvañ, V. (2011). Design and construction recommendations to improve impermeability in rainscreen walls built with natural stone coverings. Construction and Building Materials, 25(4), 1753-1761. doi:10.1016/j.conbuildmat.2010.11.091

Falk, J., & Sandin, K. (2013). Ventilated rainscreen cladding: Measurements of cavity air velocities, estimation of air change rates and evaluation of driving forces. Building and Environment, 59, 164-176. doi:10.1016/j.buildenv.2012.08.017

Cumo, F., Astiaso Garcia, D., Stefanini, V., & Tiberi, M. (2015). Technologies and strategies to design sustainable tourist accommodations in areas of high environmental value not connected to the electricity grid. International Journal of Sustainable Development and Planning, 10(1), 20-28. doi:10.2495/sdp-v10-n1-20-28

Pagliaro, F., Cellucci, L., Burattini, C., Bisegna, F., Gugliermetti, F., de Lieto Vollaro, A., … Golasi, I. (2015). A Methodological Comparison between Energy and Environmental Performance Evaluation. Sustainability, 7(8), 10324-10342. doi:10.3390/su70810324

Autodesk Simulation CFD Help Deskhttps://knowledge.autodesk.com/support/cfd/downloads/caas/downloads/content/cfd-2016-download-and-install-help-documentation.html

Moropoulou, A., Avdelidis, N., Karoglou, M., Delegou, E., Alexakis, E., & Keramidas, V. (2018). Multispectral Applications of Infrared Thermography in the Diagnosis and Protection of Built Cultural Heritage. Applied Sciences, 8(2), 284. doi:10.3390/app8020284

De Freitas, S. S., de Freitas, V. P., & Barreira, E. (2014). Detection of façade plaster detachments using infrared thermography – A nondestructive technique. Construction and Building Materials, 70, 80-87. doi:10.1016/j.conbuildmat.2014.07.094

DANESE, M., DEMŠAR, U., MASINI, N., & CHARLTON, M. (2009). INVESTIGATING MATERIAL DECAY OF HISTORIC BUILDINGS USING VISUAL ANALYTICS WITH MULTI-TEMPORAL INFRARED THERMOGRAPHIC DATA. Archaeometry, 52(3), 482-501. doi:10.1111/j.1475-4754.2009.00485.x

Lerma, C., Barreira, E., & Almeida, R. M. S. F. (2018). A discussion concerning active infrared thermography in the evaluation of buildings air infiltration. Energy and Buildings, 168, 56-66. doi:10.1016/j.enbuild.2018.02.050

Meola, C., Carlomagno, G. M., & Giorleo, L. (2004). The use of infrared thermography for materials characterization. Journal of Materials Processing Technology, 155-156, 1132-1137. doi:10.1016/j.jmatprotec.2004.04.268

Technical Guide for the External Climatic Conditions of the Projecthttps://www.idae.es/uploads/documentos/documentos_12_Guia_tecnica_condiciones_climaticas_exteriores_de_proyecto_e4e5b769.pdf

Spanish Institute for Diversification and Energy Savinghttps://www.idae.es/uploads/documentos/documentos_Guia_007_Frecuencias_horarias_repeticion_en_temperatura_Intervalo_24_h_a7945051.pdf

Relative Humidity Values 2015–2019https://www.woespana.es/weather/maps/city?LANG=es&WMO=08284&ART=RLF&CONT=eses&R=0&LEVEL=150&REGION=0005&LAND=SP&NOREGION=1&MOD=&TMX=&TMN=&SON=&PRE=&MONAT=&OFFS=&SORT=&MM=01&YY=2019&WEEK=200

Autodesk Simulation CFD Help Deskhttps://knowledge.autodesk.com/support/cfd/learn-explore/caas/CloudHelp/cloudhelp/2018/ENU/SimCFD-Learning/files/GUID-83A92AE5-0E9E-4E2D-B61F-64B3696E5F66-htm.html

Rodríguez Liñán, C., Morales Conde, M. J., Rubio de Hita, P., & Pérez Gálvez, F. (2011). Inspección mediante técnicas no destructivas de un edificio histórico: oratorio San Felipe Neri (Cádiz). Informes de la Construcción, 63(521), 13-22. doi:10.3989/ic.10.032

Guerrero, I. C., Ocaña, S. M., & Requena, I. G. (2005). Thermal–physical aspects of materials used for the construction of rural buildings in Soria (Spain). Construction and Building Materials, 19(3), 197-211. doi:10.1016/j.conbuildmat.2004.05.016

Simulation of Convective Heat Loss through Mineral Wool in a Rainscreen Façade. Presentation to Minnesota Building Enclosure Council, 24 May 2016https://bec-mn.org/wp-content/uploads/2016/05/convective-heat-loss-through-mineral-wool-in-rainscreen-facades-0526161.pdf

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record