Mostrar el registro sencillo del ítem
dc.contributor.author | Lerma Elvira, Carlos | es_ES |
dc.contributor.author | Mas Tomas, Maria De Los Angeles | es_ES |
dc.contributor.author | Gil Benso, Enrique | es_ES |
dc.contributor.author | Vercher Sanchis, José | es_ES |
dc.date.accessioned | 2020-11-04T04:32:34Z | |
dc.date.available | 2020-11-04T04:32:34Z | |
dc.date.issued | 2019-08-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/154036 | |
dc.description.abstract | [EN] Facades of buildings with stone cladding are widely used in contemporary architecture. This research work analyses the aerodynamic, thermal and relative humidity behaviour of this type of facade. One of the main novelties of the article is the analysis of air flow and temperature of the air chamber through finite elements with computational fluid dynamics (CFD). Ten three-dimensional models were designed to study the various parameters that influence the behaviour of the facade, including the thickness of the air chamber and the velocity of the outside air. A qualitative and quantitative analysis of temperature and humidity makes it possible to determine the areas susceptible to generating condensation. Infrared thermography (IRT) is used to obtain the actual outside temperature, which is used in the validation of finite element models. The temperature is reduced by 47% with air chambers of 3 cm instead of 1 cm with soft outside air velocity, and by up to 60% with moderate air velocity. In these cases, relative humidity increases by 96% and 74%, respectively. When the results obtained in CFD vary considerably in a particular area with respect to IRT, a possible pathology is identified. This work provides better knowledge on the durability of material and facades. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | CFD | es_ES |
dc.subject | IRT | es_ES |
dc.subject | Air chamber | es_ES |
dc.subject | Stone panels | es_ES |
dc.subject | Building materials | es_ES |
dc.subject | Finite elements | es_ES |
dc.subject | Natural convection | es_ES |
dc.subject.classification | MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS | es_ES |
dc.subject.classification | CONSTRUCCIONES ARQUITECTONICAS | es_ES |
dc.title | Hygrothermal Behaviour of Continuous Air Chambers on Stone Panels Façades through CFD and IRT | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app9153001 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques | es_ES |
dc.description.bibliographicCitation | Lerma Elvira, C.; Mas Tomas, MDLA.; Gil Benso, E.; Vercher Sanchis, J. (2019). Hygrothermal Behaviour of Continuous Air Chambers on Stone Panels Façades through CFD and IRT. Applied Sciences. 9(15):1-15. https://doi.org/10.3390/app9153001 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app9153001 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 15 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\392148 | es_ES |
dc.description.references | De Vahl Davis, G. (1983). Natural convection of air in a square cavity: A bench mark numerical solution. International Journal for Numerical Methods in Fluids, 3(3), 249-264. doi:10.1002/fld.1650030305 | es_ES |
dc.description.references | Kaminski, D. A., & Prakash, C. (1986). Conjugate natural convection in a square enclosure: effect of conduction in one of the vertical walls. International Journal of Heat and Mass Transfer, 29(12), 1979-1988. doi:10.1016/0017-9310(86)90017-7 | es_ES |
dc.description.references | Du, Z.-G., & Bilgen, E. (1992). Coupling of wall conduction with natural convection in a rectangular enclosure. International Journal of Heat and Mass Transfer, 35(8), 1969-1975. doi:10.1016/0017-9310(92)90199-3 | es_ES |
dc.description.references | Hakyemez, E., Mobedi, M., & Öztop, H. F. (2008). Effects of Wall-Located Heat Barrier on Conjugate Conduction/Natural-Convection Heat Transfer and Fluid Flow in Enclosures. Numerical Heat Transfer, Part A: Applications, 54(2), 197-220. doi:10.1080/10407780802084447 | es_ES |
dc.description.references | Kuehn, T. H., & Maldonado, E. A. B. (1984). Two-dimensional transient heat transfer through composite wood frame walls — Field measurements and modeling. Energy and Buildings, 6(1), 55-66. doi:10.1016/0378-7788(84)90007-0 | es_ES |
dc.description.references | Al-Sanea, S. A., & Zedan, M. F. (2012). Effect of thermal bridges on transmission loads and thermal resistance of building walls under dynamic conditions. Applied Energy, 98, 584-593. doi:10.1016/j.apenergy.2012.04.038 | es_ES |
dc.description.references | Vercher, J., Lerma, C., Vidal, M., & Gil, E. (2013). Analysis of Energy Efficiency in Construction Solutions at the Façade-Slab Connection. Advanced Materials Research, 787, 731-735. doi:10.4028/www.scientific.net/amr.787.731 | es_ES |
dc.description.references | Mas, Á., Gutiérrez, J., Gil, E., Gil, A., & Galvañ, V. (2011). Design and construction recommendations to improve impermeability in rainscreen walls built with natural stone coverings. Construction and Building Materials, 25(4), 1753-1761. doi:10.1016/j.conbuildmat.2010.11.091 | es_ES |
dc.description.references | Falk, J., & Sandin, K. (2013). Ventilated rainscreen cladding: Measurements of cavity air velocities, estimation of air change rates and evaluation of driving forces. Building and Environment, 59, 164-176. doi:10.1016/j.buildenv.2012.08.017 | es_ES |
dc.description.references | Cumo, F., Astiaso Garcia, D., Stefanini, V., & Tiberi, M. (2015). Technologies and strategies to design sustainable tourist accommodations in areas of high environmental value not connected to the electricity grid. International Journal of Sustainable Development and Planning, 10(1), 20-28. doi:10.2495/sdp-v10-n1-20-28 | es_ES |
dc.description.references | Pagliaro, F., Cellucci, L., Burattini, C., Bisegna, F., Gugliermetti, F., de Lieto Vollaro, A., … Golasi, I. (2015). A Methodological Comparison between Energy and Environmental Performance Evaluation. Sustainability, 7(8), 10324-10342. doi:10.3390/su70810324 | es_ES |
dc.description.references | Autodesk Simulation CFD Help Deskhttps://knowledge.autodesk.com/support/cfd/downloads/caas/downloads/content/cfd-2016-download-and-install-help-documentation.html | es_ES |
dc.description.references | Moropoulou, A., Avdelidis, N., Karoglou, M., Delegou, E., Alexakis, E., & Keramidas, V. (2018). Multispectral Applications of Infrared Thermography in the Diagnosis and Protection of Built Cultural Heritage. Applied Sciences, 8(2), 284. doi:10.3390/app8020284 | es_ES |
dc.description.references | De Freitas, S. S., de Freitas, V. P., & Barreira, E. (2014). Detection of façade plaster detachments using infrared thermography – A nondestructive technique. Construction and Building Materials, 70, 80-87. doi:10.1016/j.conbuildmat.2014.07.094 | es_ES |
dc.description.references | DANESE, M., DEMŠAR, U., MASINI, N., & CHARLTON, M. (2009). INVESTIGATING MATERIAL DECAY OF HISTORIC BUILDINGS USING VISUAL ANALYTICS WITH MULTI-TEMPORAL INFRARED THERMOGRAPHIC DATA. Archaeometry, 52(3), 482-501. doi:10.1111/j.1475-4754.2009.00485.x | es_ES |
dc.description.references | Lerma, C., Barreira, E., & Almeida, R. M. S. F. (2018). A discussion concerning active infrared thermography in the evaluation of buildings air infiltration. Energy and Buildings, 168, 56-66. doi:10.1016/j.enbuild.2018.02.050 | es_ES |
dc.description.references | Meola, C., Carlomagno, G. M., & Giorleo, L. (2004). The use of infrared thermography for materials characterization. Journal of Materials Processing Technology, 155-156, 1132-1137. doi:10.1016/j.jmatprotec.2004.04.268 | es_ES |
dc.description.references | Technical Guide for the External Climatic Conditions of the Projecthttps://www.idae.es/uploads/documentos/documentos_12_Guia_tecnica_condiciones_climaticas_exteriores_de_proyecto_e4e5b769.pdf | es_ES |
dc.description.references | Spanish Institute for Diversification and Energy Savinghttps://www.idae.es/uploads/documentos/documentos_Guia_007_Frecuencias_horarias_repeticion_en_temperatura_Intervalo_24_h_a7945051.pdf | es_ES |
dc.description.references | Relative Humidity Values 2015–2019https://www.woespana.es/weather/maps/city?LANG=es&WMO=08284&ART=RLF&CONT=eses&R=0&LEVEL=150®ION=0005&LAND=SP&NOREGION=1&MOD=&TMX=&TMN=&SON=&PRE=&MONAT=&OFFS=&SORT=&MM=01&YY=2019&WEEK=200 | es_ES |
dc.description.references | Autodesk Simulation CFD Help Deskhttps://knowledge.autodesk.com/support/cfd/learn-explore/caas/CloudHelp/cloudhelp/2018/ENU/SimCFD-Learning/files/GUID-83A92AE5-0E9E-4E2D-B61F-64B3696E5F66-htm.html | es_ES |
dc.description.references | Rodríguez Liñán, C., Morales Conde, M. J., Rubio de Hita, P., & Pérez Gálvez, F. (2011). Inspección mediante técnicas no destructivas de un edificio histórico: oratorio San Felipe Neri (Cádiz). Informes de la Construcción, 63(521), 13-22. doi:10.3989/ic.10.032 | es_ES |
dc.description.references | Guerrero, I. C., Ocaña, S. M., & Requena, I. G. (2005). Thermal–physical aspects of materials used for the construction of rural buildings in Soria (Spain). Construction and Building Materials, 19(3), 197-211. doi:10.1016/j.conbuildmat.2004.05.016 | es_ES |
dc.description.references | Simulation of Convective Heat Loss through Mineral Wool in a Rainscreen Façade. Presentation to Minnesota Building Enclosure Council, 24 May 2016https://bec-mn.org/wp-content/uploads/2016/05/convective-heat-loss-through-mineral-wool-in-rainscreen-facades-0526161.pdf | es_ES |