- -

Hygrothermal Behaviour of Continuous Air Chambers on Stone Panels Façades through CFD and IRT

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hygrothermal Behaviour of Continuous Air Chambers on Stone Panels Façades through CFD and IRT

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lerma Elvira, Carlos es_ES
dc.contributor.author Mas Tomas, Maria De Los Angeles es_ES
dc.contributor.author Gil Benso, Enrique es_ES
dc.contributor.author Vercher Sanchis, José es_ES
dc.date.accessioned 2020-11-04T04:32:34Z
dc.date.available 2020-11-04T04:32:34Z
dc.date.issued 2019-08-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154036
dc.description.abstract [EN] Facades of buildings with stone cladding are widely used in contemporary architecture. This research work analyses the aerodynamic, thermal and relative humidity behaviour of this type of facade. One of the main novelties of the article is the analysis of air flow and temperature of the air chamber through finite elements with computational fluid dynamics (CFD). Ten three-dimensional models were designed to study the various parameters that influence the behaviour of the facade, including the thickness of the air chamber and the velocity of the outside air. A qualitative and quantitative analysis of temperature and humidity makes it possible to determine the areas susceptible to generating condensation. Infrared thermography (IRT) is used to obtain the actual outside temperature, which is used in the validation of finite element models. The temperature is reduced by 47% with air chambers of 3 cm instead of 1 cm with soft outside air velocity, and by up to 60% with moderate air velocity. In these cases, relative humidity increases by 96% and 74%, respectively. When the results obtained in CFD vary considerably in a particular area with respect to IRT, a possible pathology is identified. This work provides better knowledge on the durability of material and facades. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject CFD es_ES
dc.subject IRT es_ES
dc.subject Air chamber es_ES
dc.subject Stone panels es_ES
dc.subject Building materials es_ES
dc.subject Finite elements es_ES
dc.subject Natural convection es_ES
dc.subject.classification MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS es_ES
dc.subject.classification CONSTRUCCIONES ARQUITECTONICAS es_ES
dc.title Hygrothermal Behaviour of Continuous Air Chambers on Stone Panels Façades through CFD and IRT es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app9153001 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques es_ES
dc.description.bibliographicCitation Lerma Elvira, C.; Mas Tomas, MDLA.; Gil Benso, E.; Vercher Sanchis, J. (2019). Hygrothermal Behaviour of Continuous Air Chambers on Stone Panels Façades through CFD and IRT. Applied Sciences. 9(15):1-15. https://doi.org/10.3390/app9153001 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app9153001 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 15 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\392148 es_ES
dc.description.references De Vahl Davis, G. (1983). Natural convection of air in a square cavity: A bench mark numerical solution. International Journal for Numerical Methods in Fluids, 3(3), 249-264. doi:10.1002/fld.1650030305 es_ES
dc.description.references Kaminski, D. A., & Prakash, C. (1986). Conjugate natural convection in a square enclosure: effect of conduction in one of the vertical walls. International Journal of Heat and Mass Transfer, 29(12), 1979-1988. doi:10.1016/0017-9310(86)90017-7 es_ES
dc.description.references Du, Z.-G., & Bilgen, E. (1992). Coupling of wall conduction with natural convection in a rectangular enclosure. International Journal of Heat and Mass Transfer, 35(8), 1969-1975. doi:10.1016/0017-9310(92)90199-3 es_ES
dc.description.references Hakyemez, E., Mobedi, M., & Öztop, H. F. (2008). Effects of Wall-Located Heat Barrier on Conjugate Conduction/Natural-Convection Heat Transfer and Fluid Flow in Enclosures. Numerical Heat Transfer, Part A: Applications, 54(2), 197-220. doi:10.1080/10407780802084447 es_ES
dc.description.references Kuehn, T. H., & Maldonado, E. A. B. (1984). Two-dimensional transient heat transfer through composite wood frame walls — Field measurements and modeling. Energy and Buildings, 6(1), 55-66. doi:10.1016/0378-7788(84)90007-0 es_ES
dc.description.references Al-Sanea, S. A., & Zedan, M. F. (2012). Effect of thermal bridges on transmission loads and thermal resistance of building walls under dynamic conditions. Applied Energy, 98, 584-593. doi:10.1016/j.apenergy.2012.04.038 es_ES
dc.description.references Vercher, J., Lerma, C., Vidal, M., & Gil, E. (2013). Analysis of Energy Efficiency in Construction Solutions at the Façade-Slab Connection. Advanced Materials Research, 787, 731-735. doi:10.4028/www.scientific.net/amr.787.731 es_ES
dc.description.references Mas, Á., Gutiérrez, J., Gil, E., Gil, A., & Galvañ, V. (2011). Design and construction recommendations to improve impermeability in rainscreen walls built with natural stone coverings. Construction and Building Materials, 25(4), 1753-1761. doi:10.1016/j.conbuildmat.2010.11.091 es_ES
dc.description.references Falk, J., & Sandin, K. (2013). Ventilated rainscreen cladding: Measurements of cavity air velocities, estimation of air change rates and evaluation of driving forces. Building and Environment, 59, 164-176. doi:10.1016/j.buildenv.2012.08.017 es_ES
dc.description.references Cumo, F., Astiaso Garcia, D., Stefanini, V., & Tiberi, M. (2015). Technologies and strategies to design sustainable tourist accommodations in areas of high environmental value not connected to the electricity grid. International Journal of Sustainable Development and Planning, 10(1), 20-28. doi:10.2495/sdp-v10-n1-20-28 es_ES
dc.description.references Pagliaro, F., Cellucci, L., Burattini, C., Bisegna, F., Gugliermetti, F., de Lieto Vollaro, A., … Golasi, I. (2015). A Methodological Comparison between Energy and Environmental Performance Evaluation. Sustainability, 7(8), 10324-10342. doi:10.3390/su70810324 es_ES
dc.description.references Autodesk Simulation CFD Help Deskhttps://knowledge.autodesk.com/support/cfd/downloads/caas/downloads/content/cfd-2016-download-and-install-help-documentation.html es_ES
dc.description.references Moropoulou, A., Avdelidis, N., Karoglou, M., Delegou, E., Alexakis, E., & Keramidas, V. (2018). Multispectral Applications of Infrared Thermography in the Diagnosis and Protection of Built Cultural Heritage. Applied Sciences, 8(2), 284. doi:10.3390/app8020284 es_ES
dc.description.references De Freitas, S. S., de Freitas, V. P., & Barreira, E. (2014). Detection of façade plaster detachments using infrared thermography – A nondestructive technique. Construction and Building Materials, 70, 80-87. doi:10.1016/j.conbuildmat.2014.07.094 es_ES
dc.description.references DANESE, M., DEMŠAR, U., MASINI, N., & CHARLTON, M. (2009). INVESTIGATING MATERIAL DECAY OF HISTORIC BUILDINGS USING VISUAL ANALYTICS WITH MULTI-TEMPORAL INFRARED THERMOGRAPHIC DATA. Archaeometry, 52(3), 482-501. doi:10.1111/j.1475-4754.2009.00485.x es_ES
dc.description.references Lerma, C., Barreira, E., & Almeida, R. M. S. F. (2018). A discussion concerning active infrared thermography in the evaluation of buildings air infiltration. Energy and Buildings, 168, 56-66. doi:10.1016/j.enbuild.2018.02.050 es_ES
dc.description.references Meola, C., Carlomagno, G. M., & Giorleo, L. (2004). The use of infrared thermography for materials characterization. Journal of Materials Processing Technology, 155-156, 1132-1137. doi:10.1016/j.jmatprotec.2004.04.268 es_ES
dc.description.references Technical Guide for the External Climatic Conditions of the Projecthttps://www.idae.es/uploads/documentos/documentos_12_Guia_tecnica_condiciones_climaticas_exteriores_de_proyecto_e4e5b769.pdf es_ES
dc.description.references Spanish Institute for Diversification and Energy Savinghttps://www.idae.es/uploads/documentos/documentos_Guia_007_Frecuencias_horarias_repeticion_en_temperatura_Intervalo_24_h_a7945051.pdf es_ES
dc.description.references Relative Humidity Values 2015–2019https://www.woespana.es/weather/maps/city?LANG=es&WMO=08284&ART=RLF&CONT=eses&R=0&LEVEL=150&REGION=0005&LAND=SP&NOREGION=1&MOD=&TMX=&TMN=&SON=&PRE=&MONAT=&OFFS=&SORT=&MM=01&YY=2019&WEEK=200 es_ES
dc.description.references Autodesk Simulation CFD Help Deskhttps://knowledge.autodesk.com/support/cfd/learn-explore/caas/CloudHelp/cloudhelp/2018/ENU/SimCFD-Learning/files/GUID-83A92AE5-0E9E-4E2D-B61F-64B3696E5F66-htm.html es_ES
dc.description.references Rodríguez Liñán, C., Morales Conde, M. J., Rubio de Hita, P., & Pérez Gálvez, F. (2011). Inspección mediante técnicas no destructivas de un edificio histórico: oratorio San Felipe Neri (Cádiz). Informes de la Construcción, 63(521), 13-22. doi:10.3989/ic.10.032 es_ES
dc.description.references Guerrero, I. C., Ocaña, S. M., & Requena, I. G. (2005). Thermal–physical aspects of materials used for the construction of rural buildings in Soria (Spain). Construction and Building Materials, 19(3), 197-211. doi:10.1016/j.conbuildmat.2004.05.016 es_ES
dc.description.references Simulation of Convective Heat Loss through Mineral Wool in a Rainscreen Façade. Presentation to Minnesota Building Enclosure Council, 24 May 2016https://bec-mn.org/wp-content/uploads/2016/05/convective-heat-loss-through-mineral-wool-in-rainscreen-facades-0526161.pdf es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem