- -

Spatially-induced nestedness in a neutral model of phage-bacteria networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spatially-induced nestedness in a neutral model of phage-bacteria networks

Mostrar el registro completo del ítem

Valverde, S.; Elena Fito, SF.; Solé, R. (2017). Spatially-induced nestedness in a neutral model of phage-bacteria networks. Virus Evolution. 3(2):1-7. https://doi.org/10.1093/ve/vex021

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/154094

Ficheros en el ítem

Metadatos del ítem

Título: Spatially-induced nestedness in a neutral model of phage-bacteria networks
Autor: Valverde, Sergi ELENA FITO, SANTIAGO FCO Solé, Ricard
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Ecological networks, both displaying mutualistic or antagonistic interactions, seem to share common structural traits: the presence of nestedness and modularity. A variety of model approaches and hypothesis have been ...[+]
Palabras clave: Nested networks , Coevolution , Virus host interactions , Matching allele dynamics
Derechos de uso: Reserva de todos los derechos
Fuente:
Virus Evolution. (eissn: 2057-1577 )
DOI: 10.1093/ve/vex021
Editorial:
Oxford University Press
Versión del editor: https://doi.org/10.1093/ve/vex021
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BFU2015-65037-P/ES/EVOLUCION DE VIRUS EN HUESPEDES CON SUSCEPTIBILIDAD VARIABLE: CONSECUENCIAS EN EFICACIA Y VIRULENCIA DE CAMBIOS EN LAS REDES INTERACTOMICAS DE PROTEINAS VIRUS-HUESPED/
info:eu-repo/grantAgreement/MINECO//FIS2016-77447-R/ES/PREDICCION DE INNOVACION TECNOLOGICA EN REDES DE CULTUROMICA/
Agradecimientos:
The authors would like to thank the members of the Complex Systems Lab and our colleagues at the Santa Fe Institute for fruitful discussions. This work has been supported by the Botin Foundation by Banco Santander through ...[+]
Tipo: Artículo

References

Ashby, B., & Boots, M. (2017). Multi-mode fluctuating selection in host-parasite coevolution. Ecology Letters, 20(3), 357-365. doi:10.1111/ele.12734

Atmar, W., & Patterson, B. D. (1993). The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia, 96(3), 373-382. doi:10.1007/bf00317508

Bangham, J., Obbard, D. J., Kim, K.-W., Haddrill, P. R., & Jiggins, F. M. (2007). The age and evolution of an antiviral resistance mutation in Drosophila melanogaster. Proceedings of the Royal Society B: Biological Sciences, 274(1621), 2027-2034. doi:10.1098/rspb.2007.0611 [+]
Ashby, B., & Boots, M. (2017). Multi-mode fluctuating selection in host-parasite coevolution. Ecology Letters, 20(3), 357-365. doi:10.1111/ele.12734

Atmar, W., & Patterson, B. D. (1993). The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia, 96(3), 373-382. doi:10.1007/bf00317508

Bangham, J., Obbard, D. J., Kim, K.-W., Haddrill, P. R., & Jiggins, F. M. (2007). The age and evolution of an antiviral resistance mutation in Drosophila melanogaster. Proceedings of the Royal Society B: Biological Sciences, 274(1621), 2027-2034. doi:10.1098/rspb.2007.0611

Bastolla, U., Fortuna, M. A., Pascual-García, A., Ferrera, A., Luque, B., & Bascompte, J. (2009). The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature, 458(7241), 1018-1020. doi:10.1038/nature07950

Beckett, S. J., & Williams, H. T. P. (2013). Coevolutionary diversification creates nested-modular structure in phage–bacteria interaction networks. Interface Focus, 3(6), 20130033. doi:10.1098/rsfs.2013.0033

Bohannan, B. J. M., & Lenski, R. E. (2000). Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecology Letters, 3(4), 362-377. doi:10.1046/j.1461-0248.2000.00161.x

Flor, H. H. (1956). The Complementary Genic Systems in Flax and Flax Rust. Advances in Genetics, 29-54. doi:10.1016/s0065-2660(08)60498-8

Flores, C. O., Meyer, J. R., Valverde, S., Farr, L., & Weitz, J. S. (2011). Statistical structure of host-phage interactions. Proceedings of the National Academy of Sciences, 108(28), E288-E297. doi:10.1073/pnas.1101595108

Flores, C. O., Valverde, S., & Weitz, J. S. (2012). Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages. The ISME Journal, 7(3), 520-532. doi:10.1038/ismej.2012.135

Specificity versus detectable polymorphism in host–parasite genetics. (1993). Proceedings of the Royal Society of London. Series B: Biological Sciences, 254(1341), 191-197. doi:10.1098/rspb.1993.0145

Galeano, J., Pastor, J. M., & Iriondo, J. M. (2009). Weighted-Interaction Nestedness Estimator (WINE): A new estimator to calculate over frequency matrices. Environmental Modelling & Software, 24(11), 1342-1346. doi:10.1016/j.envsoft.2009.05.014

Haerter, J. O., Mitarai, N., & Sneppen, K. (2014). Phage and bacteria support mutual diversity in a narrowing staircase of coexistence. The ISME Journal, 8(11), 2317-2326. doi:10.1038/ismej.2014.80

Hillung, J., Cuevas, J. M., Valverde, S., & Elena, S. F. (2014). EXPERIMENTAL EVOLUTION OF AN EMERGING PLANT VIRUS IN HOST GENOTYPES THAT DIFFER IN THEIR SUSCEPTIBILITY TO INFECTION. Evolution, 68(9), 2467-2480. doi:10.1111/evo.12458

Jover, L. F., Cortez, M. H., & Weitz, J. S. (2013). Mechanisms of multi-strain coexistence in host–phage systems with nested infection networks. Journal of Theoretical Biology, 332, 65-77. doi:10.1016/j.jtbi.2013.04.011

Jover, L. F., Flores, C. O., Cortez, M. H., & Weitz, J. S. (2015). Multiple regimes of robust patterns between network structure and biodiversity. Scientific Reports, 5(1). doi:10.1038/srep17856

Korytowski, D. A., & Smith, H. L. (2014). How nested and monogamous infection networks in host-phage communities come to be. Theoretical Ecology, 8(1), 111-120. doi:10.1007/s12080-014-0236-6

Koskella, B., & Brockhurst, M. A. (2014). Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiology Reviews, 38(5), 916-931. doi:10.1111/1574-6976.12072

MAY, R. M. (1972). Will a Large Complex System be Stable? Nature, 238(5364), 413-414. doi:10.1038/238413a0

Montoya, J. M., Pimm, S. L., & Solé, R. V. (2006). Ecological networks and their fragility. Nature, 442(7100), 259-264. doi:10.1038/nature04927

Mouillot, D., Krasnov, B. R., & Poulin, R. (2008). HIGH INTERVALITY EXPLAINED BY PHYLOGENETIC CONSTRAINTS IN HOST–PARASITE WEBS. Ecology, 89(7), 2043-2051. doi:10.1890/07-1241.1

Poulin, R., & Guégan, J.-F. (2000). Nestedness, anti-nestedness, and the relationship between prevalence and intensity in ectoparasite assemblages of marine fish: a spatial model of species coexistence. International Journal for Parasitology, 30(11), 1147-1152. doi:10.1016/s0020-7519(00)00102-8

Staniczenko, P. P. A., Kopp, J. C., & Allesina, S. (2013). The ghost of nestedness in ecological networks. Nature Communications, 4(1). doi:10.1038/ncomms2422

Suttle, C. A. (2005). Viruses in the sea. Nature, 437(7057), 356-361. doi:10.1038/nature04160

Thompson, J. N., & Burdon, J. J. (1992). Gene-for-gene coevolution between plants and parasites. Nature, 360(6400), 121-125. doi:10.1038/360121a0

VAZQUEZ, D. P., POULIN, R., KRASNOV, B. R., & SHENBROT, G. I. (2005). Species abundance and the distribution of specialization in host-parasite interaction networks. Journal of Animal Ecology, 74(5), 946-955. doi:10.1111/j.1365-2656.2005.00992.x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem