- -

Room temperature silylation of alcohols catalyzed by metal organic frameworks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Room temperature silylation of alcohols catalyzed by metal organic frameworks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dhakshinamoorthy, Amarajothi es_ES
dc.contributor.author Santiago-Portillo, Andrea es_ES
dc.contributor.author Concepción Heydorn, Patricia es_ES
dc.contributor.author Herance, Jose R. es_ES
dc.contributor.author Navalón Oltra, Sergio es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2020-11-05T04:33:24Z
dc.date.available 2020-11-05T04:33:24Z
dc.date.issued 2017-06-21 es_ES
dc.identifier.issn 2044-4753 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154108
dc.description.abstract [EN] The commercial Al(OH)(BDC) (BDC: 1,4-benzenedicarboxylic acid) metal organic framework (Basolite A100) is a suitable heterogeneous catalyst for the silylation of benzylic and aliphatic alcohols by hexamethyldisilazane in toluene at room temperature. Al(OH)(BDC) is stable under the reaction conditions as evidenced by powder XRD and can be reused with minimal activity decrease. es_ES
dc.description.sponsorship AD thanks University Grants Commission (UGC), New Delhi for the award of Assistant Professorship under its Faculty Recharge Programme. AD also thanks the Department of Science and Technology, India for the financial support through the Fast Track project (SB/FT/CS-166/2013) and the Generalidad Valenciana for financial aid supporting his stay in Valencia through the Prometeo programme. Financial support by the Spanish Ministry of Economy and Competitiveness (CTQ-2015-69 153-CO2-R1 and Severo Ochoa) and Generalidad Valenciana (Prometeo 2012-014) is gratefully acknowledged es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Catalysis Science & Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Room temperature silylation of alcohols catalyzed by metal organic frameworks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c7cy00834a es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DST//SB%2FFT%2FCS-166%2F2013/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-69153-C2-1-R/ES/EXPLOTANDO EL USO DEL GRAFENO EN CATALISIS. USO DEL GRAFENO COMO CARBOCATALIZADOR O COMO SOPORTE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Dhakshinamoorthy, A.; Santiago-Portillo, A.; Concepción Heydorn, P.; Herance, JR.; Navalón Oltra, S.; Alvaro Rodríguez, MM.; García Gómez, H. (2017). Room temperature silylation of alcohols catalyzed by metal organic frameworks. Catalysis Science & Technology. 7(12):2445-2449. https://doi.org/10.1039/c7cy00834a es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c7cy00834a es_ES
dc.description.upvformatpinicio 2445 es_ES
dc.description.upvformatpfin 2449 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 12 es_ES
dc.relation.pasarela S\357362 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Department of Science and Technology, Ministry of Science and Technology, India es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references T. W. Greene and P. G. M.Wuts, Protective Groups in Organic Synthesis, Wiley & Sons, New York, 3rd edn, 1999, p. 116 es_ES
dc.description.references Sartori, G., Ballini, R., Bigi, F., Bosica, G., Maggi, R., & Righi, P. (2004). Protection (and Deprotection) of Functional Groups in Organic Synthesis by Heterogeneous Catalysis. Chemical Reviews, 104(1), 199-250. doi:10.1021/cr0200769 es_ES
dc.description.references Corey, E. J., & Snider, B. B. (1972). Total synthesis of (+-)-fumagillin. Journal of the American Chemical Society, 94(7), 2549-2550. doi:10.1021/ja00762a080 es_ES
dc.description.references Karimi, B., & Golshani, B. (2000). Mild and Highly Efficient Method for the Silylation of Alcohols Using Hexamethyldisilazane Catalyzed by Iodine under Nearly Neutral Reaction Conditions. The Journal of Organic Chemistry, 65(21), 7228-7230. doi:10.1021/jo005519s es_ES
dc.description.references Firouzabadi, H., Iranpoor, N., Amani, K., & Nowrouzi, F. (2002). Tungstophosphoric acid (H3PW12O40) as a heterogeneous inorganic catalyst. Activation of hexamethyldisilazane (HMDS) by tungstophosphoric acid for efficient and selective solvent-free O-silylation reactions. Journal of the Chemical Society, Perkin Transactions 1, (23), 2601-2604. doi:10.1039/b208202k es_ES
dc.description.references Zareyee, D., & Karimi, B. (2007). A novel and highly efficient method for the silylation of alcohols with hexamethyldisilazane (HMDS) catalyzed by recyclable sulfonic acid-functionalized ordered nanoporous silica. Tetrahedron Letters, 48(7), 1277-1280. doi:10.1016/j.tetlet.2006.12.030 es_ES
dc.description.references Moghadam, M., Tangestaninejad, S., Mirkhani, V., Mohammadpoor-Baltork, I., Chahardahcheric, S., & Tavakoli, Z. (2008). Rapid and highly efficient trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) catalyzed by reusable zirconyl triflate, [ZrO(OTf)2]. Journal of Organometallic Chemistry, 693(11), 2041-2046. doi:10.1016/j.jorganchem.2008.03.009 es_ES
dc.description.references Firouzabadi, H., Iranpoor, N., & Farahi, S. (2009). Highly regio- and chemoselective silylation of diethyl α-hydroxyphosphonates, alcohols and phenols in the presence of solid TiCl3(OTf) as a catalyst with hexamethyldisilazane (HMDS) at room temperature in the absence of solvent. Catalysis Communications, 10(11), 1547-1550. doi:10.1016/j.catcom.2009.04.013 es_ES
dc.description.references Shirini, F., Atghia, S. V., & Jirdehi, M. G. (2012). Nanocrystalline TiO2–HClO4 as a new, efficient and recyclable catalyst for the chemoselective trimethylsilylation of alcohols, phenols and deprotection of silyl ethers. Catalysis Communications, 18, 5-10. doi:10.1016/j.catcom.2011.11.002 es_ES
dc.description.references Sridhar, M., Raveendra, J., China Ramanaiah, B., & Narsaiah, C. (2011). An efficient synthesis of silyl ethers of primary alcohols, secondary alcohols, phenols and oximes with a hydrosilane using InBr3 as a catalyst. Tetrahedron Letters, 52(45), 5980-5982. doi:10.1016/j.tetlet.2011.08.151 es_ES
dc.description.references Shirini, F., Khaligh, N. G., & Akbari-Dadamahaleh, S. (2012). Preparation, characterization and use of 1,3-disulfonic acid imidazolium hydrogen sulfate as an efficient, halogen-free and reusable ionic liquid catalyst for the trimethylsilyl protection of hydroxyl groups and deprotection of the obtained trimethylsilanes. Journal of Molecular Catalysis A: Chemical, 365, 15-23. doi:10.1016/j.molcata.2012.08.002 es_ES
dc.description.references Villabrille, P., Romanelli, G., Quaranta, N., & Vázquez, P. (2010). An efficient catalytic route for the preparation of silyl ethers using alumina-supported heteropolyoxometalates. Applied Catalysis B: Environmental, 96(3-4), 379-386. doi:10.1016/j.apcatb.2010.02.035 es_ES
dc.description.references Shirini, F., & Mollarazi, E. (2007). Efficient trimethylsilylation of alcohols and phenols in the presence of ZrCl4 as a reusable catalyst. Catalysis Communications, 8(9), 1393-1396. doi:10.1016/j.catcom.2006.11.015 es_ES
dc.description.references Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804-6849. doi:10.1039/c4cs00395k es_ES
dc.description.references Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43(16), 6011-6061. doi:10.1039/c4cs00094c es_ES
dc.description.references Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2015). Metal–organic frameworks catalyzed C–C and C–heteroatom coupling reactions. Chemical Society Reviews, 44(7), 1922-1947. doi:10.1039/c4cs00254g es_ES
dc.description.references Dhakshinamoorthy, A., & Garcia, H. (2014). Metal–organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. Chem. Soc. Rev., 43(16), 5750-5765. doi:10.1039/c3cs60442j es_ES
dc.description.references Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts. Catalysis Science & Technology, 6(14), 5238-5261. doi:10.1039/c6cy00695g es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2012). Commercial metal–organic frameworks as heterogeneous catalysts. Chemical Communications, 48(92), 11275. doi:10.1039/c2cc34329k es_ES
dc.description.references Schneemann, A., Bon, V., Schwedler, I., Senkovska, I., Kaskel, S., & Fischer, R. A. (2014). Flexible metal–organic frameworks. Chem. Soc. Rev., 43(16), 6062-6096. doi:10.1039/c4cs00101j es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate. Applied Catalysis A: General, 378(1), 19-25. doi:10.1016/j.apcata.2010.01.042 es_ES
dc.description.references Boutin, A., Springuel-Huet, M.-A., Nossov, A., Gédéon, A., Loiseau, T., Volkringer, C., … Fuchs, A. H. (2009). Breathing Transitions in MIL-53(Al) Metal-Organic Framework Upon Xenon Adsorption. Angewandte Chemie International Edition, 48(44), 8314-8317. doi:10.1002/anie.200903153 es_ES
dc.description.references Sholl, D. S., & Lively, R. P. (2015). Defects in Metal–Organic Frameworks: Challenge or Opportunity? The Journal of Physical Chemistry Letters, 6(17), 3437-3444. doi:10.1021/acs.jpclett.5b01135 es_ES
dc.description.references Fang, Z., Bueken, B., De Vos, D. E., & Fischer, R. A. (2015). Defect-Engineered Metal-Organic Frameworks. Angewandte Chemie International Edition, 54(25), 7234-7254. doi:10.1002/anie.201411540 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem