- -

Room temperature silylation of alcohols catalyzed by metal organic frameworks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Room temperature silylation of alcohols catalyzed by metal organic frameworks

Mostrar el registro completo del ítem

Dhakshinamoorthy, A.; Santiago-Portillo, A.; Concepción Heydorn, P.; Herance, JR.; Navalón Oltra, S.; Alvaro Rodríguez, MM.; García Gómez, H. (2017). Room temperature silylation of alcohols catalyzed by metal organic frameworks. Catalysis Science & Technology. 7(12):2445-2449. https://doi.org/10.1039/c7cy00834a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/154108

Ficheros en el ítem

Metadatos del ítem

Título: Room temperature silylation of alcohols catalyzed by metal organic frameworks
Autor: Dhakshinamoorthy, Amarajothi Santiago-Portillo, Andrea Concepción Heydorn, Patricia Herance, Jose R. Navalón Oltra, Sergio Alvaro Rodríguez, Maria Mercedes García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] The commercial Al(OH)(BDC) (BDC: 1,4-benzenedicarboxylic acid) metal organic framework (Basolite A100) is a suitable heterogeneous catalyst for the silylation of benzylic and aliphatic alcohols by hexamethyldisilazane ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Catalysis Science & Technology. (issn: 2044-4753 )
DOI: 10.1039/c7cy00834a
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c7cy00834a
Código del Proyecto:
info:eu-repo/grantAgreement/DST//SB%2FFT%2FCS-166%2F2013/
info:eu-repo/grantAgreement/MINECO//CTQ2015-69153-C2-1-R/ES/EXPLOTANDO EL USO DEL GRAFENO EN CATALISIS. USO DEL GRAFENO COMO CARBOCATALIZADOR O COMO SOPORTE/
Agradecimientos:
AD thanks University Grants Commission (UGC), New Delhi for the award of Assistant Professorship under its Faculty Recharge Programme. AD also thanks the Department of Science and Technology, India for the financial support ...[+]
Tipo: Artículo

References

T. W. Greene and P. G. M.Wuts, Protective Groups in Organic Synthesis, Wiley & Sons, New York, 3rd edn, 1999, p. 116

Sartori, G., Ballini, R., Bigi, F., Bosica, G., Maggi, R., & Righi, P. (2004). Protection (and Deprotection) of Functional Groups in Organic Synthesis by Heterogeneous Catalysis. Chemical Reviews, 104(1), 199-250. doi:10.1021/cr0200769

Corey, E. J., & Snider, B. B. (1972). Total synthesis of (+-)-fumagillin. Journal of the American Chemical Society, 94(7), 2549-2550. doi:10.1021/ja00762a080 [+]
T. W. Greene and P. G. M.Wuts, Protective Groups in Organic Synthesis, Wiley & Sons, New York, 3rd edn, 1999, p. 116

Sartori, G., Ballini, R., Bigi, F., Bosica, G., Maggi, R., & Righi, P. (2004). Protection (and Deprotection) of Functional Groups in Organic Synthesis by Heterogeneous Catalysis. Chemical Reviews, 104(1), 199-250. doi:10.1021/cr0200769

Corey, E. J., & Snider, B. B. (1972). Total synthesis of (+-)-fumagillin. Journal of the American Chemical Society, 94(7), 2549-2550. doi:10.1021/ja00762a080

Karimi, B., & Golshani, B. (2000). Mild and Highly Efficient Method for the Silylation of Alcohols Using Hexamethyldisilazane Catalyzed by Iodine under Nearly Neutral Reaction Conditions. The Journal of Organic Chemistry, 65(21), 7228-7230. doi:10.1021/jo005519s

Firouzabadi, H., Iranpoor, N., Amani, K., & Nowrouzi, F. (2002). Tungstophosphoric acid (H3PW12O40) as a heterogeneous inorganic catalyst. Activation of hexamethyldisilazane (HMDS) by tungstophosphoric acid for efficient and selective solvent-free O-silylation reactions. Journal of the Chemical Society, Perkin Transactions 1, (23), 2601-2604. doi:10.1039/b208202k

Zareyee, D., & Karimi, B. (2007). A novel and highly efficient method for the silylation of alcohols with hexamethyldisilazane (HMDS) catalyzed by recyclable sulfonic acid-functionalized ordered nanoporous silica. Tetrahedron Letters, 48(7), 1277-1280. doi:10.1016/j.tetlet.2006.12.030

Moghadam, M., Tangestaninejad, S., Mirkhani, V., Mohammadpoor-Baltork, I., Chahardahcheric, S., & Tavakoli, Z. (2008). Rapid and highly efficient trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) catalyzed by reusable zirconyl triflate, [ZrO(OTf)2]. Journal of Organometallic Chemistry, 693(11), 2041-2046. doi:10.1016/j.jorganchem.2008.03.009

Firouzabadi, H., Iranpoor, N., & Farahi, S. (2009). Highly regio- and chemoselective silylation of diethyl α-hydroxyphosphonates, alcohols and phenols in the presence of solid TiCl3(OTf) as a catalyst with hexamethyldisilazane (HMDS) at room temperature in the absence of solvent. Catalysis Communications, 10(11), 1547-1550. doi:10.1016/j.catcom.2009.04.013

Shirini, F., Atghia, S. V., & Jirdehi, M. G. (2012). Nanocrystalline TiO2–HClO4 as a new, efficient and recyclable catalyst for the chemoselective trimethylsilylation of alcohols, phenols and deprotection of silyl ethers. Catalysis Communications, 18, 5-10. doi:10.1016/j.catcom.2011.11.002

Sridhar, M., Raveendra, J., China Ramanaiah, B., & Narsaiah, C. (2011). An efficient synthesis of silyl ethers of primary alcohols, secondary alcohols, phenols and oximes with a hydrosilane using InBr3 as a catalyst. Tetrahedron Letters, 52(45), 5980-5982. doi:10.1016/j.tetlet.2011.08.151

Shirini, F., Khaligh, N. G., & Akbari-Dadamahaleh, S. (2012). Preparation, characterization and use of 1,3-disulfonic acid imidazolium hydrogen sulfate as an efficient, halogen-free and reusable ionic liquid catalyst for the trimethylsilyl protection of hydroxyl groups and deprotection of the obtained trimethylsilanes. Journal of Molecular Catalysis A: Chemical, 365, 15-23. doi:10.1016/j.molcata.2012.08.002

Villabrille, P., Romanelli, G., Quaranta, N., & Vázquez, P. (2010). An efficient catalytic route for the preparation of silyl ethers using alumina-supported heteropolyoxometalates. Applied Catalysis B: Environmental, 96(3-4), 379-386. doi:10.1016/j.apcatb.2010.02.035

Shirini, F., & Mollarazi, E. (2007). Efficient trimethylsilylation of alcohols and phenols in the presence of ZrCl4 as a reusable catalyst. Catalysis Communications, 8(9), 1393-1396. doi:10.1016/j.catcom.2006.11.015

Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804-6849. doi:10.1039/c4cs00395k

Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43(16), 6011-6061. doi:10.1039/c4cs00094c

Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2015). Metal–organic frameworks catalyzed C–C and C–heteroatom coupling reactions. Chemical Society Reviews, 44(7), 1922-1947. doi:10.1039/c4cs00254g

Dhakshinamoorthy, A., & Garcia, H. (2014). Metal–organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. Chem. Soc. Rev., 43(16), 5750-5765. doi:10.1039/c3cs60442j

Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts. Catalysis Science & Technology, 6(14), 5238-5261. doi:10.1039/c6cy00695g

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2012). Commercial metal–organic frameworks as heterogeneous catalysts. Chemical Communications, 48(92), 11275. doi:10.1039/c2cc34329k

Schneemann, A., Bon, V., Schwedler, I., Senkovska, I., Kaskel, S., & Fischer, R. A. (2014). Flexible metal–organic frameworks. Chem. Soc. Rev., 43(16), 6062-6096. doi:10.1039/c4cs00101j

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate. Applied Catalysis A: General, 378(1), 19-25. doi:10.1016/j.apcata.2010.01.042

Boutin, A., Springuel-Huet, M.-A., Nossov, A., Gédéon, A., Loiseau, T., Volkringer, C., … Fuchs, A. H. (2009). Breathing Transitions in MIL-53(Al) Metal-Organic Framework Upon Xenon Adsorption. Angewandte Chemie International Edition, 48(44), 8314-8317. doi:10.1002/anie.200903153

Sholl, D. S., & Lively, R. P. (2015). Defects in Metal–Organic Frameworks: Challenge or Opportunity? The Journal of Physical Chemistry Letters, 6(17), 3437-3444. doi:10.1021/acs.jpclett.5b01135

Fang, Z., Bueken, B., De Vos, D. E., & Fischer, R. A. (2015). Defect-Engineered Metal-Organic Frameworks. Angewandte Chemie International Edition, 54(25), 7234-7254. doi:10.1002/anie.201411540

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem