- -

Efectos del cambio climático en el recurso hídrico de los países andinos

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Efectos del cambio climático en el recurso hídrico de los países andinos

Show full item record

Del Jesus, M.; Paz, J.; Navas, S.; Turienzo, E.; Diez-Sierra, J.; Peña, N. (2020). Efectos del cambio climático en el recurso hídrico de los países andinos. Ingeniería del agua. 24(4):219-233. https://doi.org/10.4995/ia.2020.12135

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/154136

Files in this item

Item Metadata

Title: Efectos del cambio climático en el recurso hídrico de los países andinos
Secondary Title: Climate change impacts on the water resources of Andean countries
Author: del Jesus, M. Paz, J. Navas, S. Turienzo, E. Diez-Sierra, J. Peña, N.
Issued date:
Abstract:
[ES] Latinoamérica presenta una alta disponibilidad y un elevado volumen de recurso hídrico. Este hecho, combinado con una abrupta topografía, permite generar importantes aprovechamientos hidroeléctricos con estructuras ...[+]


[EN] Latin America is characterized by a highly available, large amount of water resources. This fact, combined with an abrupt topography allows the creation of important hydropower stations with relatively small structures, ...[+]
Subjects: Hydropower energy , Climate change , Geostatistics , VIC , RCP , Energía hidroeléctrica , Cambio climático , Técnicas geoestadísticas
Copyrigths: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Source:
Ingeniería del agua. (issn: 1134-2196 ) (eissn: 1886-4996 )
DOI: 10.4995/ia.2020.12135
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/ia.2020.12135
Project ID:
AEI/BIA2016-78397-P
Thanks:
Banco Interamericano de Desarrollo (BID), la Organización Latinoamericana de la Energía (OLADE), Agencia Estatal de Investigación (AEI) y Fondo Europeo de Desarrollo Regional (FEDER)
Type: Artículo

References

Bao, X., Zhang, F. 2013. Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. Journal of Climate, 26(1), 206-214. https://doi.org/10.1175/JCLI-D-12-00056.1

Benenson, I., Torrens, P. 2004. Geosimulation: Automata-Based Modeling of Urban Phenomena. John Wiley & Sons Limited. https://doi.org/10.1002/0470020997

Charron, I. 2016. A Guidebook on Climate Scenarios: Using Climate Information to Guide Adaptation Research and Decisions, 2016 Edition. Ouranos, 94 p. [+]
Bao, X., Zhang, F. 2013. Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. Journal of Climate, 26(1), 206-214. https://doi.org/10.1175/JCLI-D-12-00056.1

Benenson, I., Torrens, P. 2004. Geosimulation: Automata-Based Modeling of Urban Phenomena. John Wiley & Sons Limited. https://doi.org/10.1002/0470020997

Charron, I. 2016. A Guidebook on Climate Scenarios: Using Climate Information to Guide Adaptation Research and Decisions, 2016 Edition. Ouranos, 94 p.

Collischonn, B., Collischonn, W., Tucci, C.E.M. 2008. Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. Journal of Hydrology, 360(1-4), 207-216. https://doi.org/10.1016/J.JHYDROL.2008.07.032

Dept. of Civil and Env. Engineering University of Washington. 2018. Variable Infiltration Capacity (VIC). Macroscale Hydrologic Model. Obtenido de https://vic.readthedocs.io/en/master/Documentation/Drivers/Classic/SoilParam/

Fuka, D.R., Walter, M.T., Macalister, C., Degaetano, A.T., Steenhuis, T.S., Easton, Z.M. 2014. Using the Climate Forecast System Reanalysis as weather input data for watershed models. Hydrological Processes, 28(22), 5613-5623. https://doi.org/10.1002/hyp.10073

Herrera, S., Gutiérrez, J.M., Ancell, R., Pons, M.R., Frías, M.D., Fernández, J. 2012. Development and analysis of a 50-year high-resolution daily gridded precipitation dataset over Spain (Spain02). International Journal of Climatology, 32(1), 74-85. https://doi.org/10.1002/joc.2256

Karl, T.R., Riebsame, W.E. 1989. The impact of decadal fluctuations in mean precipitation and temperature on runoff: A sensitivity study over the United States. Climatic Change, 15(3), 423-447. https://doi.org/10.1007/BF00240466

Lehner, B., Verdin, K., Jarvis, A. 2008. New global hydrography derived from spaceborne elevation data. Eos, 89(10), 93-94. https://doi.org/10.1029/2008EO100001

Menne, M.J., Durre, I., Vose, R.S., Gleason, B.E., Houston, T.G. 2012. An overview of the global historical climatology networkdaily database. Journal of Atmospheric and Oceanic Technology, 29(7), 897-910. https://doi.org/10.1175/JTECH-D-11-00103.1

Moreno, R., Ferreira, R., Barroso, L., Rudnick, H., Pereira, E. 2017. Facilitating the Integration of Renewables in Latin America: The Role of Hydropower Generation and Other Energy Storage Technologies. IEEE Power and Energy Magazine, 15(5), 68-80. https://doi.org/10.1109/MPE.2017.2708862

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L. 2007. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885-900. https://doi.org/10.13031/2013.23153

Nachtergaele, F., Velthuizen, H. Van, Verelst, L., Batjes, N., Dijkshoorn, K., Engelen, V. Van, … Shi, X. 2009. Harmonized World Soil Database (version 1). FAO, Rome, Italy and IIASA, Laxenburg, Austria.

Popp, A., Calvin, K., Fujimori, S., Havlik, P., Humpenöder, F., Stehfest, E., … Vuuren, D.P. va. 2017. Land-use futures in the shared socio-economic pathways. Global Environmental Change, 42, 331-345. https://doi.org/10.1016/j.gloenvcha.2016.10.002

Rawls, W.J., Brakensiek, D.L., Saxton, K.E. 1982. Estimation of Soil Water Properties. Transactions of the ASAE, 25, 1316-1320, 1328. https://doi.org/10.13031/2013.33720

Saha, S., Moorthi, S., Pan, H.L., Wu, X., Wang, J., Nadiga, S., … Goldberg, M. 2010. The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91(8), 1015-1057. https://doi.org/10.1175/2010BAMS3001.1

Solarin, S.A., Ozturk, I. 2015. On the causal dynamics between hydroelectricity consumption and economic growth in Latin America countries. Renewable and Sustainable Energy Reviews, 52, 1857-1868. https://doi.org/10.1016/j.rser.2015.08.003

Tebaldi, C., Knutti, R. 2007. The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1857), 2053-2075. https://doi.org/10.1098/rsta.2007.2076

Turner, S.W.D., Hejazi, M., Kim, S.H., Clarke, L., Edmonds, J. 2017. Climate impacts on hydropower and consequences for global electricity supply investment needs. Energy, 141, 2081-2090. https://doi.org/10.1016/j.energy.2017.11.089

van der Zwaan, B., Kober, T., Calderon, S., Clarke, L., Daenzer, K., Kitous, A., … Di Sbroiavacca, N. 2014. Energy technology roll-out for climate change mitigation: A multi-model study for Latin America. Energy Economics, 56, 526-542. https://doi.org/10.1016/j.eneco.2015.11.019

Zhang, X., Li, H.Y., Deng, Z.D., Ringler, C., Gao, Y., Hejazi, M.I., Leung, L.R. 2018. Impacts of climate change, policy and Water-Energy-Food nexus on hydropower development. Renewable Energy, 116(October), 827-834. https://doi.org/10.1016/j.renene.2017.10.030

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record