Mostrar el registro sencillo del ítem
dc.contributor.author | del Jesus, M. | es_ES |
dc.contributor.author | Paz, J. | es_ES |
dc.contributor.author | Navas, S. | es_ES |
dc.contributor.author | Turienzo, E. | es_ES |
dc.contributor.author | Diez-Sierra, J. | es_ES |
dc.contributor.author | Peña, N. | es_ES |
dc.date.accessioned | 2020-11-05T07:41:20Z | |
dc.date.available | 2020-11-05T07:41:20Z | |
dc.date.issued | 2020-10-30 | |
dc.identifier.issn | 1134-2196 | |
dc.identifier.uri | http://hdl.handle.net/10251/154136 | |
dc.description.abstract | [ES] Latinoamérica presenta una alta disponibilidad y un elevado volumen de recurso hídrico. Este hecho, combinado con una abrupta topografía, permite generar importantes aprovechamientos hidroeléctricos con estructuras relativamente reducidas, lo que ha hecho proliferar este tipo de explotaciones. De manera reciente, sin embargo, ha comenzado a manifestarse inquietud respecto a los efectos que el cambio climático pueda tener sobre las centrales hidroeléctricas, y cómo esto pueda afectar a la disponibilidad y distribución de energía eléctrica en los distintos países. En el presente trabajo presentamos la metodología y principales resultados obtenidos en el estudio Vulnerabilidad al cambio climático y medidas de adaptación de sistemas hidroeléctricos en países andinos que ha cubierto los sistemas hidroeléctricos de Bolivia, Colombia, Ecuador y Perú. Focalizaremos nuestros esfuerzos en el análisis del recurso hídrico, paso previo al análisis de la evolución del recurso hidroeléctrico, a nivel regional, donde se han generado unas bases de datos homogéneas para toda el área de estudio mediante reconstrucción temporal y espacial, haciendo uso de técnicas de krigeado. También se ha procedido a homogeneizar la información sobre tipos de suelo y usos del suelo. La hidrología se ha resuelto con el modelo hidrológico semidistribuido VIC. Se ha analizado el periodo histórico 1980-2010, y se han generado proyecciones de cambio climático para el corto plazo (2011-2040), el medio plazo (2041-2070) y el largo plazo (2071-2100) para los escenarios RCP4.5 y RCP8.5 utilizados en el 5° informe del IPCC (Panel Intergubernamental para el Cambio Climático). Se ha tenido en cuenta además la posible evolución socioeconómica y su impacto sobre los usos del suelo. | es_ES |
dc.description.abstract | [EN] Latin America is characterized by a highly available, large amount of water resources. This fact, combined with an abrupt topography allows the creation of important hydropower stations with relatively small structures, what has fostered this kind of infrastructures. Recently, however, some worries have started to appear related to the effects that climate change may have on hydropower stations, and how these effects may change the spatial distribution of energy generation in the region. In this work, we present a methodology and the main results obtained in the study Climate change vulnerability and adaptation measures of hydropower stations in Andean countries that has studied the hydropower systems of Bolivia, Colombia, Ecuador and Peru. The main focus of this work is on the regional analysis of the water resources, a previous step to the analysis of the evolution of hydropower resources, where homogeneous databases of hydroclimatic variables have been generated for the whole study area, making use of spatio-temporal reconstruction through Kriging. Land use and soil type information has also been homogenized for the whole study area. Hydrology has been resolved with the semi distributed hydrologic model VIC. We have analyzed the historic period 1980-2010 and have generated climate change projections for the short term (2011-2040), the medium term (2041-2070) and the long term (2071-2100) for scenarios RCP4.5 and RCP8.5 of the 5th Assessment Report of the IPCC. We have also considered the socio-economic evolution and its impact on land use. | es_ES |
dc.description.sponsorship | Banco Interamericano de Desarrollo (BID), la Organización Latinoamericana de la Energía (OLADE), Agencia Estatal de Investigación (AEI) y Fondo Europeo de Desarrollo Regional (FEDER) | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Ingeniería del agua | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Hydropower energy | es_ES |
dc.subject | Climate change | es_ES |
dc.subject | Geostatistics | es_ES |
dc.subject | VIC | es_ES |
dc.subject | RCP | es_ES |
dc.subject | Energía hidroeléctrica | es_ES |
dc.subject | Cambio climático | es_ES |
dc.subject | Técnicas geoestadísticas | es_ES |
dc.title | Efectos del cambio climático en el recurso hídrico de los países andinos | es_ES |
dc.title.alternative | Climate change impacts on the water resources of Andean countries | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/ia.2020.12135 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIA2016-78397-P/ES/GENERACION SINTETICA DE DISTRIBUCIONES DE VEGETACION PARA APLICACIONES HIDROLOGICAS/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Del Jesus, M.; Paz, J.; Navas, S.; Turienzo, E.; Diez-Sierra, J.; Peña, N. (2020). Efectos del cambio climático en el recurso hídrico de los países andinos. Ingeniería del agua. 24(4):219-233. https://doi.org/10.4995/ia.2020.12135 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ia.2020.12135 | es_ES |
dc.description.upvformatpinicio | 219 | es_ES |
dc.description.upvformatpfin | 233 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1886-4996 | |
dc.relation.pasarela | OJS\12135 | es_ES |
dc.contributor.funder | Banco Interamericano de Desarrollo | es_ES |
dc.contributor.funder | Organización Latinoamericana de Energía | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Bao, X., Zhang, F. 2013. Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. Journal of Climate, 26(1), 206-214. https://doi.org/10.1175/JCLI-D-12-00056.1 | es_ES |
dc.description.references | Benenson, I., Torrens, P. 2004. Geosimulation: Automata-Based Modeling of Urban Phenomena. John Wiley & Sons Limited. https://doi.org/10.1002/0470020997 | es_ES |
dc.description.references | Charron, I. 2016. A Guidebook on Climate Scenarios: Using Climate Information to Guide Adaptation Research and Decisions, 2016 Edition. Ouranos, 94 p. | es_ES |
dc.description.references | Collischonn, B., Collischonn, W., Tucci, C.E.M. 2008. Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. Journal of Hydrology, 360(1-4), 207-216. https://doi.org/10.1016/J.JHYDROL.2008.07.032 | es_ES |
dc.description.references | Dept. of Civil and Env. Engineering University of Washington. 2018. Variable Infiltration Capacity (VIC). Macroscale Hydrologic Model. Obtenido de https://vic.readthedocs.io/en/master/Documentation/Drivers/Classic/SoilParam/ | es_ES |
dc.description.references | Fuka, D.R., Walter, M.T., Macalister, C., Degaetano, A.T., Steenhuis, T.S., Easton, Z.M. 2014. Using the Climate Forecast System Reanalysis as weather input data for watershed models. Hydrological Processes, 28(22), 5613-5623. https://doi.org/10.1002/hyp.10073 | es_ES |
dc.description.references | Herrera, S., Gutiérrez, J.M., Ancell, R., Pons, M.R., Frías, M.D., Fernández, J. 2012. Development and analysis of a 50-year high-resolution daily gridded precipitation dataset over Spain (Spain02). International Journal of Climatology, 32(1), 74-85. https://doi.org/10.1002/joc.2256 | es_ES |
dc.description.references | Karl, T.R., Riebsame, W.E. 1989. The impact of decadal fluctuations in mean precipitation and temperature on runoff: A sensitivity study over the United States. Climatic Change, 15(3), 423-447. https://doi.org/10.1007/BF00240466 | es_ES |
dc.description.references | Lehner, B., Verdin, K., Jarvis, A. 2008. New global hydrography derived from spaceborne elevation data. Eos, 89(10), 93-94. https://doi.org/10.1029/2008EO100001 | es_ES |
dc.description.references | Menne, M.J., Durre, I., Vose, R.S., Gleason, B.E., Houston, T.G. 2012. An overview of the global historical climatology networkdaily database. Journal of Atmospheric and Oceanic Technology, 29(7), 897-910. https://doi.org/10.1175/JTECH-D-11-00103.1 | es_ES |
dc.description.references | Moreno, R., Ferreira, R., Barroso, L., Rudnick, H., Pereira, E. 2017. Facilitating the Integration of Renewables in Latin America: The Role of Hydropower Generation and Other Energy Storage Technologies. IEEE Power and Energy Magazine, 15(5), 68-80. https://doi.org/10.1109/MPE.2017.2708862 | es_ES |
dc.description.references | Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L. 2007. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885-900. https://doi.org/10.13031/2013.23153 | es_ES |
dc.description.references | Nachtergaele, F., Velthuizen, H. Van, Verelst, L., Batjes, N., Dijkshoorn, K., Engelen, V. Van, … Shi, X. 2009. Harmonized World Soil Database (version 1). FAO, Rome, Italy and IIASA, Laxenburg, Austria. | es_ES |
dc.description.references | Popp, A., Calvin, K., Fujimori, S., Havlik, P., Humpenöder, F., Stehfest, E., … Vuuren, D.P. va. 2017. Land-use futures in the shared socio-economic pathways. Global Environmental Change, 42, 331-345. https://doi.org/10.1016/j.gloenvcha.2016.10.002 | es_ES |
dc.description.references | Rawls, W.J., Brakensiek, D.L., Saxton, K.E. 1982. Estimation of Soil Water Properties. Transactions of the ASAE, 25, 1316-1320, 1328. https://doi.org/10.13031/2013.33720 | es_ES |
dc.description.references | Saha, S., Moorthi, S., Pan, H.L., Wu, X., Wang, J., Nadiga, S., … Goldberg, M. 2010. The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91(8), 1015-1057. https://doi.org/10.1175/2010BAMS3001.1 | es_ES |
dc.description.references | Solarin, S.A., Ozturk, I. 2015. On the causal dynamics between hydroelectricity consumption and economic growth in Latin America countries. Renewable and Sustainable Energy Reviews, 52, 1857-1868. https://doi.org/10.1016/j.rser.2015.08.003 | es_ES |
dc.description.references | Tebaldi, C., Knutti, R. 2007. The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1857), 2053-2075. https://doi.org/10.1098/rsta.2007.2076 | es_ES |
dc.description.references | Turner, S.W.D., Hejazi, M., Kim, S.H., Clarke, L., Edmonds, J. 2017. Climate impacts on hydropower and consequences for global electricity supply investment needs. Energy, 141, 2081-2090. https://doi.org/10.1016/j.energy.2017.11.089 | es_ES |
dc.description.references | van der Zwaan, B., Kober, T., Calderon, S., Clarke, L., Daenzer, K., Kitous, A., … Di Sbroiavacca, N. 2014. Energy technology roll-out for climate change mitigation: A multi-model study for Latin America. Energy Economics, 56, 526-542. https://doi.org/10.1016/j.eneco.2015.11.019 | es_ES |
dc.description.references | Zhang, X., Li, H.Y., Deng, Z.D., Ringler, C., Gao, Y., Hejazi, M.I., Leung, L.R. 2018. Impacts of climate change, policy and Water-Energy-Food nexus on hydropower development. Renewable Energy, 116(October), 827-834. https://doi.org/10.1016/j.renene.2017.10.030 | es_ES |