- -

Zr-MOF-808@MCM-41 catalyzed phosgene-free synthesis of polyurethane precursors

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Zr-MOF-808@MCM-41 catalyzed phosgene-free synthesis of polyurethane precursors

Show full item record

Rojas-Buzo, S.; García-García, P.; Corma Canós, A. (2019). Zr-MOF-808@MCM-41 catalyzed phosgene-free synthesis of polyurethane precursors. Catalysis Science & Technology. 9(1):146-156. https://doi.org/10.1039/c8cy02235f

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/154505

Files in this item

Item Metadata

Title: Zr-MOF-808@MCM-41 catalyzed phosgene-free synthesis of polyurethane precursors
Author: Rojas-Buzo, Sergio García-García, Pilar Corma Canós, Avelino
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
[EN] In this work, a catalytic method is presented for the synthesis of aromatic carbamates from aromatic amines using dimethyl carbonate instead of phosgene as a green and safe reaction process. Microcrystalline Zr-MOF-808 ...[+]
Copyrigths: Reserva de todos los derechos
Catalysis Science & Technology. (issn: 2044-4753 )
DOI: 10.1039/c8cy02235f
The Royal Society of Chemistry
Publisher version: https://doi.org/10.1039/c8cy02235f
Project ID:
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
This work was funded by the European Union through the European Research Council (grant ERC-AdG-2014-671093, SynCatMatch) and by the Spanish government through the Severo Ochoa program (SEV-2016-0683). S.R.-B. acknowledges ...[+]
Type: Artículo


Tundo, P., & Selva, M. (2002). The Chemistry of Dimethyl Carbonate. Accounts of Chemical Research, 35(9), 706-716. doi:10.1021/ar010076f

Fiorani, G., Perosa, A., & Selva, M. (2018). Dimethyl carbonate: a versatile reagent for a sustainable valorization of renewables. Green Chemistry, 20(2), 288-322. doi:10.1039/c7gc02118f

Tundo, P., Rossi, L., & Loris, A. (2005). Dimethyl Carbonate as an Ambident Electrophile. The Journal of Organic Chemistry, 70(6), 2219-2224. doi:10.1021/jo048532b [+]
Tundo, P., & Selva, M. (2002). The Chemistry of Dimethyl Carbonate. Accounts of Chemical Research, 35(9), 706-716. doi:10.1021/ar010076f

Fiorani, G., Perosa, A., & Selva, M. (2018). Dimethyl carbonate: a versatile reagent for a sustainable valorization of renewables. Green Chemistry, 20(2), 288-322. doi:10.1039/c7gc02118f

Tundo, P., Rossi, L., & Loris, A. (2005). Dimethyl Carbonate as an Ambident Electrophile. The Journal of Organic Chemistry, 70(6), 2219-2224. doi:10.1021/jo048532b

Han, C., & Porco. (2007). Synthesis of Carbamates and Ureas Using Zr(IV)-Catalyzed Exchange Processes. Organic Letters, 9(8), 1517-1520. doi:10.1021/ol0702728

Zhang, L., Yang, Y., Xue, Y., Fu, X., An, Y., & Gao, G. (2010). Experimental and theoretical investigation of reaction of aniline with dimethyl carbonate catalyzed by acid–base bifunctional ionic liquids. Catalysis Today, 158(3-4), 279-285. doi:10.1016/j.cattod.2010.03.060

Baba, T., Kobayashi, A., Yamauchi, T., Tanaka, H., Aso, S., Inomata, M., & Kawanami, Y. (2002). Catalysis Letters, 82(3/4), 193-197. doi:10.1023/a:1020566928295

Reixach, E., Haak, R. M., Wershofen, S., & Vidal-Ferran, A. (2012). Alkoxycarbonylation of Industrially Relevant Anilines Using Zn4O(O2CCH3)6 as Catalyst. Industrial & Engineering Chemistry Research, 51(50), 16165-16170. doi:10.1021/ie301315k

Zhao, X., Kang, L., Wang, N., An, H., Li, F., & Wang, Y. (2012). Synthesis of Methyl N-Phenyl Carbamate Catalyzed by Ionic Liquid-Promoted Zinc Acetate. Industrial & Engineering Chemistry Research, 51(35), 11335-11340. doi:10.1021/ie301246q

Curini, M., Epifano, F., Maltese, F., & Rosati, O. (2002). Carbamate synthesis from amines and dimethyl carbonate under ytterbium triflate catalysis. Tetrahedron Letters, 43(28), 4895-4897. doi:10.1016/s0040-4039(02)00965-6

Wang, G. R., Wang, Y. J., & Zhao, X. Q. (2005). Kinetic and Technological Analysis of Dimethyl Toluene-2,4-Dicarbamate Synthesis. Chemical Engineering & Technology, 28(12), 1511-1517. doi:10.1002/ceat.200500248

Li, F., Wang, Y., Xue, W., & Zhao, X. (2009). Clean synthesis of methyl N-phenyl carbamate over ZnO-TiO2catalyst. Journal of Chemical Technology & Biotechnology, 84(1), 48-53. doi:10.1002/jctb.2003

Grego, S., Aricò, F., & Tundo, P. (2013). Highly Selective Phosgene-Free Carbamoylation of Aniline by Dimethyl Carbonate under Continuous-Flow Conditions. Organic Process Research & Development, 17(4), 679-683. doi:10.1021/op4000048

Kumar, S., & Jain, S. L. (2013). A nanostarch functionalized ionic liquid containing imidazolium cation and cobalt chelate anion for the synthesis of carbamates from amines and dimethyl carbonate. Dalton Transactions, 42(42), 15214. doi:10.1039/c3dt52127c

Stock, N., & Biswas, S. (2011). Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 112(2), 933-969. doi:10.1021/cr200304e

Zhou, H.-C., Long, J. R., & Yaghi, O. M. (2012). Introduction to Metal–Organic Frameworks. Chemical Reviews, 112(2), 673-674. doi:10.1021/cr300014x

Férey, G., Haouas, M., Loiseau, T., & Taulelle, F. (2013). Nanoporous Solids: How Do They Form? An In Situ Approach. Chemistry of Materials, 26(1), 299-309. doi:10.1021/cm4019875

Kuppler, R. J., Timmons, D. J., Fang, Q.-R., Li, J.-R., Makal, T. A., Young, M. D., … Zhou, H.-C. (2009). Potential applications of metal-organic frameworks. Coordination Chemistry Reviews, 253(23-24), 3042-3066. doi:10.1016/j.ccr.2009.05.019

García-García, P., Moreno, J. M., Díaz, U., Bruix, M., & Corma, A. (2016). Organic–inorganic supramolecular solid catalyst boosts organic reactions in water. Nature Communications, 7(1). doi:10.1038/ncomms10835

García-García, P., Müller, M., & Corma, A. (2014). MOF catalysis in relation to their homogeneous counterparts and conventional solid catalysts. Chemical Science, 5(8), 2979. doi:10.1039/c4sc00265b

Rojas-Buzo, S., García-García, P., & Corma, A. (2017). Remarkable Acceleration of Benzimidazole Synthesis and Cyanosilylation Reactions in a Supramolecular Solid Catalyst. ChemCatChem, 9(6), 997-1004. doi:10.1002/cctc.201601407

Liang, J., Liang, Z., Zou, R., & Zhao, Y. (2017). Heterogeneous Catalysis in Zeolites, Mesoporous Silica, and Metal-Organic Frameworks. Advanced Materials, 29(30), 1701139. doi:10.1002/adma.201701139

Zhu, L., Liu, X.-Q., Jiang, H.-L., & Sun, L.-B. (2017). Metal–Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 117(12), 8129-8176. doi:10.1021/acs.chemrev.7b00091

Rimoldi, M., Howarth, A. J., DeStefano, M. R., Lin, L., Goswami, S., Li, P., … Farha, O. K. (2016). Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks. ACS Catalysis, 7(2), 997-1014. doi:10.1021/acscatal.6b02923

Liu, Y., Klet, R. C., Hupp, J. T., & Farha, O. (2016). Probing the correlations between the defects in metal–organic frameworks and their catalytic activity by an epoxide ring-opening reaction. Chemical Communications, 52(50), 7806-7809. doi:10.1039/c6cc03727e

Moon, S.-Y., Liu, Y., Hupp, J. T., & Farha, O. K. (2015). Instantaneous Hydrolysis of Nerve-Agent Simulants with a Six-Connected Zirconium-Based Metal-Organic Framework. Angewandte Chemie International Edition, 54(23), 6795-6799. doi:10.1002/anie.201502155

Rojas-Buzo, S., García-García, P., & Corma, A. (2017). Catalytic Transfer Hydrogenation of Biomass-Derived Carbonyls over Hafnium-Based Metal-Organic Frameworks. ChemSusChem, 11(2), 432-438. doi:10.1002/cssc.201701708

Plessers, E., Fu, G., Tan, C., De Vos, D., & Roeffaers, M. (2016). Zr-Based MOF-808 as Meerwein–Ponndorf–Verley Reduction Catalyst for Challenging Carbonyl Compounds. Catalysts, 6(7), 104. doi:10.3390/catal6070104

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate. Applied Catalysis A: General, 378(1), 19-25. doi:10.1016/j.apcata.2010.01.042

Cliffe, M. J., Wan, W., Zou, X., Chater, P. A., Kleppe, A. K., Tucker, M. G., … Goodwin, A. L. (2014). Correlated defect nanoregions in a metal–organic framework. Nature Communications, 5(1). doi:10.1038/ncomms5176

Furukawa, H., Gándara, F., Zhang, Y.-B., Jiang, J., Queen, W. L., Hudson, M. R., & Yaghi, O. M. (2014). Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. Journal of the American Chemical Society, 136(11), 4369-4381. doi:10.1021/ja500330a

Hu, Z., Peng, Y., Gao, Y., Qian, Y., Ying, S., Yuan, D., … Zhao, D. (2016). Direct Synthesis of Hierarchically Porous Metal–Organic Frameworks with High Stability and Strong Brønsted Acidity: The Decisive Role of Hafnium in Efficient and Selective Fructose Dehydration. Chemistry of Materials, 28(8), 2659-2667. doi:10.1021/acs.chemmater.6b00139

Li, F., Min, R., Li, J., Gao, L., Xue, W., Wang, Y., & Zhao, X. (2014). Condensation Reaction of Methyl N-Phenylcarbamate with Formaldehyde over Hβ Catalyst. Industrial & Engineering Chemistry Research, 53(13), 5406-5412. doi:10.1021/ie404045n

Luz, I., Soukri, M., & Lail, M. (2017). Confining Metal–Organic Framework Nanocrystals within Mesoporous Materials: A General Approach via «Solid-State» Synthesis. Chemistry of Materials, 29(22), 9628-9638. doi:10.1021/acs.chemmater.7b02042

Cirujano, F. G., Luz, I., Soukri, M., Van Goethem, C., Vankelecom, I. F. J., Lail, M., & De Vos, D. E. (2017). Boosting the Catalytic Performance of Metal-Organic Frameworks for Steroid Transformations by Confinement within a Mesoporous Scaffold. Angewandte Chemie International Edition, 56(43), 13302-13306. doi:10.1002/anie.201706721

He, J., Duan, X., & Li, C. (2001). Improving the stability of MCM-41 by monolayer dispersion of a metal oxide. Materials Chemistry and Physics, 71(3), 221-225. doi:10.1016/s0254-0584(01)00297-8




This item appears in the following Collection(s)

Show full item record