Mostrar el registro sencillo del ítem
dc.contributor.author | Nadji, L. | es_ES |
dc.contributor.author | Masso Ramírez, Amada | es_ES |
dc.contributor.author | Delgado-Muñoz, Daniel | es_ES |
dc.contributor.author | Isaadi, R. | es_ES |
dc.contributor.author | Rodríguez-Aguado, E. | es_ES |
dc.contributor.author | Rodriguez-Castellon, E. | es_ES |
dc.contributor.author | López Nieto, José Manuel | es_ES |
dc.date.accessioned | 2020-11-11T04:31:52Z | |
dc.date.available | 2020-11-11T04:31:52Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/154795 | |
dc.description.abstract | [EN] Solid acid catalysts based on WO3¿SiO2 and WO3¿ZrO2¿SiO2 were prepared by one-pot non-hydrolytic sol¿gel method and tested in the gas phase glycerol dehydration to acrolein. Their structural and textural characteristics were determined by X-ray diffraction (XRD), N2 adsorption, X-ray energy dispersive spectroscopy (XEDS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Their acid characteristics were studied by both temperature programmed desorption of ammonia (NH3-TPD) and FTIR of adsorbed pyridine. Under our operating conditions, all the catalysts were active and selective in the transformation of glycerol to acrolein, which was always the main reaction product. The high selectivity to acrolein is achieved on catalysts presenting a higher proportion of Brønsted acid sites. In addition, the role of oxygen in the feed on catalytic performance of these catalysts is also discussed. | es_ES |
dc.description.sponsorship | The authors would like to acknowledge the DGICYT (CTQ2015-68951-C3-1-R, CTQ2015-68951-C3-3-R and SEV-2016-0683) and Secretary of State for International Cooperation in Spain (Project AP/040992/11) and Ministry of Higher Education and Scientific Research of Algeria for the National Exceptional Program for the fellowships. D. D. thanks MINECO and Severo Ochoa Excellence Program for his fellowship (SVP-2014-068669). Authors also would like to thank the Electron Microscopy Service of Universitat Politecnica de Valencia for their support. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | RSC Advances | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.title | Gas phase dehydration of glycerol to acrolein over WO3-based catalysts prepared by non-hydrolytic sol-gel synthesis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c8ra01575a | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MAEC//AP%2F040992%2F11/ES/PREPARACIÓN, CARACTERIZACIÓN Y PROPIEDADES CATALÍTICAS PARA REACCIONES CATALÍTICAS SOSTENIBLES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-68951-C3-3-R/ES/TRATAMIENTOS CATALITICOS AVANZADOS PARA LA VALORIZACION DE LA BIOMASA Y LA ELIMINACION DE RESIDUOS ASOCIADOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SVP-2014-068669/ES/SVP-2014-068669/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-68951-C3-1-R/ES/TRATAMIENTOS CATALITICOS AVANZADOS PARA LA VALORIZACION DE LA BIOMASA Y LA ELIMINACION DE RESIDUOS ASOCIADOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Nadji, L.; Masso Ramírez, A.; Delgado-Muñoz, D.; Isaadi, R.; Rodríguez-Aguado, E.; Rodriguez-Castellon, E.; López Nieto, JM. (2018). Gas phase dehydration of glycerol to acrolein over WO3-based catalysts prepared by non-hydrolytic sol-gel synthesis. RSC Advances. 8(24):13344-13352. https://doi.org/10.1039/c8ra01575a | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c8ra01575a | es_ES |
dc.description.upvformatpinicio | 13344 | es_ES |
dc.description.upvformatpfin | 13352 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 24 | es_ES |
dc.identifier.eissn | 2046-2069 | es_ES |
dc.relation.pasarela | S\376755 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Asuntos Exteriores y Cooperación | es_ES |
dc.contributor.funder | Ministère de l'Enseignement Supérieur et de la Recherche Scientifique, Argelia | es_ES |
dc.description.references | Besson, M., Gallezot, P., & Pinel, C. (2013). Conversion of Biomass into Chemicals over Metal Catalysts. Chemical Reviews, 114(3), 1827-1870. doi:10.1021/cr4002269 | es_ES |
dc.description.references | Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492b | es_ES |
dc.description.references | Talebian-Kiakalaieh, A., Amin, N. A. S., & Hezaveh, H. (2014). Glycerol for renewable acrolein production by catalytic dehydration. Renewable and Sustainable Energy Reviews, 40, 28-59. doi:10.1016/j.rser.2014.07.168 | es_ES |
dc.description.references | Bagheri, S., Julkapli, N. M., & Yehye, W. A. (2015). Catalytic conversion of biodiesel derived raw glycerol to value added products. Renewable and Sustainable Energy Reviews, 41, 113-127. doi:10.1016/j.rser.2014.08.031 | es_ES |
dc.description.references | Cespi, D., Passarini, F., Mastragostino, G., Vassura, I., Larocca, S., Iaconi, A., … Cavani, F. (2015). Glycerol as feedstock in the synthesis of chemicals: a life cycle analysis for acrolein production. Green Chemistry, 17(1), 343-355. doi:10.1039/c4gc01497a | es_ES |
dc.description.references | Vasiliadou, E. S., & Lemonidou, A. A. (2014). Glycerol transformation to value added C3 diols: reaction mechanism, kinetic, and engineering aspects. Wiley Interdisciplinary Reviews: Energy and Environment, 4(6), 486-520. doi:10.1002/wene.159 | es_ES |
dc.description.references | Katryniok, B., Paul, S., Bellière-Baca, V., Rey, P., & Dumeignil, F. (2010). Glycerol dehydration to acrolein in the context of new uses of glycerol. Green Chemistry, 12(12), 2079. doi:10.1039/c0gc00307g | es_ES |
dc.description.references | Martin, A., Armbruster, U., & Atia, H. (2011). Recent developments in dehydration of glycerol toward acrolein over heteropolyacids. European Journal of Lipid Science and Technology, 114(1), 10-23. doi:10.1002/ejlt.201100047 | es_ES |
dc.description.references | BURRINGTON, J., & GRASSELLI, R. (1979). Aspects of selective oxidation and ammoxidation mechanisms over bismuth molybdate catalysts. Journal of Catalysis, 59(1), 79-99. doi:10.1016/s0021-9517(79)80047-0 | es_ES |
dc.description.references | BETTAHAR, M., COSTENTIN, G., SAVARY, L., & LAVALLEY, J. (1996). On the partial oxidation of propane and propylene on mixed metal oxide catalysts. Applied Catalysis A: General, 145(1-2), 1-48. doi:10.1016/0926-860x(96)00138-x | es_ES |
dc.description.references | Sprenger, P., Kleist, W., & Grunwaldt, J.-D. (2017). Recent Advances in Selective Propylene Oxidation over Bismuth Molybdate Based Catalysts: Synthetic, Spectroscopic, and Theoretical Approaches. ACS Catalysis, 7(9), 5628-5642. doi:10.1021/acscatal.7b01149 | es_ES |
dc.description.references | Bui, L., Chakrabarti, R., & Bhan, A. (2016). Mechanistic Origins of Unselective Oxidation Products in the Conversion of Propylene to Acrolein on Bi2Mo3O12. ACS Catalysis, 6(10), 6567-6580. doi:10.1021/acscatal.6b01830 | es_ES |
dc.description.references | Carriço, C. S., Cruz, F. T., dos Santos, M. B., Oliveira, D. S., Pastore, H. O., Andrade, H. M. C., & Mascarenhas, A. J. S. (2016). MWW-type catalysts for gas phase glycerol dehydration to acrolein. Journal of Catalysis, 334, 34-41. doi:10.1016/j.jcat.2015.11.010 | es_ES |
dc.description.references | Vieira, L. H., Carvalho, K. T. G., Urquieta-González, E. A., Pulcinelli, S. H., Santilli, C. V., & Martins, L. (2016). Effects of crystal size, acidity, and synthesis procedure on the catalytic performance of gallium and aluminum MFI zeolites in glycerol dehydration. Journal of Molecular Catalysis A: Chemical, 422, 148-157. doi:10.1016/j.molcata.2015.12.019 | es_ES |
dc.description.references | Alhanash, A., Kozhevnikova, E. F., & Kozhevnikov, I. V. (2010). Gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt. Applied Catalysis A: General, 378(1), 11-18. doi:10.1016/j.apcata.2010.01.043 | es_ES |
dc.description.references | Ding, J., Ma, T., Yan, C., Shao, R., Xu, W., & Yun, Z. (2018). Vapour Phase Dehydration of Glycerol to Acrolein Over Wells–Dawson Type H6P2W18O62 Supported on Mesoporous Silica Catalysts Prepared by Supercritical Impregnation. Journal of Nanoscience and Nanotechnology, 18(4), 2463-2471. doi:10.1166/jnn.2018.14396 | es_ES |
dc.description.references | Shen, L., Yin, H., Wang, A., Feng, Y., Shen, Y., Wu, Z., & Jiang, T. (2012). Liquid phase dehydration of glycerol to acrolein catalyzed by silicotungstic, phosphotungstic, and phosphomolybdic acids. Chemical Engineering Journal, 180, 277-283. doi:10.1016/j.cej.2011.11.058 | es_ES |
dc.description.references | Wang, F., Dubois, J.-L., & Ueda, W. (2010). Catalytic performance of vanadium pyrophosphate oxides (VPO) in the oxidative dehydration of glycerol. Applied Catalysis A: General, 376(1-2), 25-32. doi:10.1016/j.apcata.2009.11.031 | es_ES |
dc.description.references | Deleplanque, J., Dubois, J.-L., Devaux, J.-F., & Ueda, W. (2010). Production of acrolein and acrylic acid through dehydration and oxydehydration of glycerol with mixed oxide catalysts. Catalysis Today, 157(1-4), 351-358. doi:10.1016/j.cattod.2010.04.012 | es_ES |
dc.description.references | Lee, K. A., Ryoo, H., Ma, B. C., & Kim, Y. (2018). Acrolein Production by Gas-Phase Glycerol Dehydration Using PO4/Nb2O5 Catalysts. Journal of Nanoscience and Nanotechnology, 18(2), 1312-1315. doi:10.1166/jnn.2018.14897 | es_ES |
dc.description.references | Ma, T., Ding, J., Shao, R., & Yun, Z. (2016). Catalytic conversion of glycerol to acrolein over MCM-41 by the grafting of phosphorus species. The Canadian Journal of Chemical Engineering, 94(5), 924-930. doi:10.1002/cjce.22457 | es_ES |
dc.description.references | Foo, G. S., Wei, D., Sholl, D. S., & Sievers, C. (2014). Role of Lewis and Brønsted Acid Sites in the Dehydration of Glycerol over Niobia. ACS Catalysis, 4(9), 3180-3192. doi:10.1021/cs5006376 | es_ES |
dc.description.references | Nogueira, F. G. E., Asencios, Y. J. O., Rodella, C. B., Porto, A. L. M., & Assaf, E. M. (2016). Alternative route for the synthesis of high surface-area η-Al2O3/Nb2O5 catalyst from aluminum waste. Materials Chemistry and Physics, 184, 23-30. doi:10.1016/j.matchemphys.2016.08.032 | es_ES |
dc.description.references | Lauriol-Garbay, P., Millet, J. M. M., Loridant, S., Bellière-Baca, V., & Rey, P. (2011). New efficient and long-life catalyst for gas-phase glycerol dehydration to acrolein. Journal of Catalysis, 280(1), 68-76. doi:10.1016/j.jcat.2011.03.005 | es_ES |
dc.description.references | Znaiguia, R., Brandhorst, L., Christin, N., Bellière Baca, V., Rey, P., Millet, J.-M. M., & Loridant, S. (2014). Toward longer life catalysts for dehydration of glycerol to acrolein. Microporous and Mesoporous Materials, 196, 97-103. doi:10.1016/j.micromeso.2014.04.053 | es_ES |
dc.description.references | Sung, K.-H., & Cheng, S. (2017). Effect of Nb doping in WO3/ZrO2 catalysts on gas phase dehydration of glycerol to form acrolein. RSC Advances, 7(66), 41880-41888. doi:10.1039/c7ra08154e | es_ES |
dc.description.references | Cecilia, J. A., García-Sancho, C., Mérida-Robles, J. M., Santamaría González, J., Moreno-Tost, R., & Maireles-Torres, P. (2016). WO3 supported on Zr doped mesoporous SBA-15 silica for glycerol dehydration to acrolein. Applied Catalysis A: General, 516, 30-40. doi:10.1016/j.apcata.2016.02.016 | es_ES |
dc.description.references | Massa, M., Andersson, A., Finocchio, E., & Busca, G. (2013). Gas-phase dehydration of glycerol to acrolein over Al2O3-, SiO2-, and TiO2-supported Nb- and W-oxide catalysts. Journal of Catalysis, 307, 170-184. doi:10.1016/j.jcat.2013.07.022 | es_ES |
dc.description.references | Massa, M., Andersson, A., Finocchio, E., Busca, G., Lenrick, F., & Wallenberg, L. R. (2013). Performance of ZrO 2 -supported Nb- and W-oxide in the gas-phase dehydration of glycerol to acrolein. Journal of Catalysis, 297, 93-109. doi:10.1016/j.jcat.2012.09.021 | es_ES |
dc.description.references | Akizuki, M., Sano, K., & Oshima, Y. (2016). Effect of supercritical water on the stability of WO X /TiO 2 and NbO X /TiO 2 catalysts during glycerol dehydration. The Journal of Supercritical Fluids, 113, 158-165. doi:10.1016/j.supflu.2016.03.027 | es_ES |
dc.description.references | Chai, S.-H., Tao, L.-Z., Yan, B., Vedrine, J. C., & Xu, B.-Q. (2014). Sustainable production of acrolein: effects of reaction variables, modifiers doping and ZrO2origin on the performance of WO3/ZrO2catalyst for the gas-phase dehydration of glycerol. RSC Adv., 4(9), 4619-4630. doi:10.1039/c3ra46511j | es_ES |
dc.description.references | Dalil, M., Carnevali, D., Dubois, J.-L., & Patience, G. S. (2015). Transient acrolein selectivity and carbon deposition study of glycerol dehydration over WO3/TiO2 catalyst. Chemical Engineering Journal, 270, 557-563. doi:10.1016/j.cej.2015.02.058 | es_ES |
dc.description.references | Dalil, M., Carnevali, D., Edake, M., Auroux, A., Dubois, J.-L., & Patience, G. S. (2016). Gas phase dehydration of glycerol to acrolein: Coke on WO3/TiO2 reduces by-products. Journal of Molecular Catalysis A: Chemical, 421, 146-155. doi:10.1016/j.molcata.2016.05.022 | es_ES |
dc.description.references | Maksasithorn, S., Praserthdam, P., Suriye, K., Devillers, M., & Debecker, D. P. (2014). WO3-based catalysts prepared by non-hydrolytic sol-gel for the production of propene by cross-metathesis of ethene and 2-butene. Applied Catalysis A: General, 488, 200-207. doi:10.1016/j.apcata.2014.09.030 | es_ES |
dc.description.references | Debecker, D. P., Hulea, V., & Mutin, P. H. (2013). Mesoporous mixed oxide catalysts via non-hydrolytic sol–gel: A review. Applied Catalysis A: General, 451, 192-206. doi:10.1016/j.apcata.2012.11.002 | es_ES |
dc.description.references | Styskalik, A., Skoda, D., Barnes, C., & Pinkas, J. (2017). The Power of Non-Hydrolytic Sol-Gel Chemistry: A Review. Catalysts, 7(6), 168. doi:10.3390/catal7060168 | es_ES |
dc.description.references | Djaoued, Y., Ashrit, P. V., Badilescu, S., & Brüning, R. (2003). Journal of Sol-Gel Science and Technology, 28(2), 235-244. doi:10.1023/a:1026089318607 | es_ES |
dc.description.references | Oakton, E., Siddiqi, G., Fedorov, A., & Copéret, C. (2016). Tungsten oxide by non-hydrolytic sol–gel: effect of molecular precursor on morphology, phase and photocatalytic performance. New Journal of Chemistry, 40(1), 217-222. doi:10.1039/c5nj01973g | es_ES |
dc.description.references | Debecker, D. P., Bouchmella, K., Stoyanova, M., Rodemerck, U., Gaigneaux, E. M., & Hubert Mutin, P. (2012). A non-hydrolytic sol–gel route to highly active MoO3–SiO2–Al2O3 metathesis catalysts. Catalysis Science & Technology, 2(6), 1157. doi:10.1039/c2cy00475e | es_ES |
dc.description.references | Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145 | es_ES |
dc.description.references | Soriano, M. D., Concepción, P., Nieto, J. M. L., Cavani, F., Guidetti, S., & Trevisanut, C. (2011). Tungsten-Vanadium mixed oxides for the oxidehydration of glycerol into acrylic acid. Green Chemistry, 13(10), 2954. doi:10.1039/c1gc15622e | es_ES |
dc.description.references | Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society, 62(7), 1723-1732. doi:10.1021/ja01864a025 | es_ES |