- -

Gas phase dehydration of glycerol to acrolein over WO3-based catalysts prepared by non-hydrolytic sol-gel synthesis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Gas phase dehydration of glycerol to acrolein over WO3-based catalysts prepared by non-hydrolytic sol-gel synthesis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Nadji, L. es_ES
dc.contributor.author Masso Ramírez, Amada es_ES
dc.contributor.author Delgado-Muñoz, Daniel es_ES
dc.contributor.author Isaadi, R. es_ES
dc.contributor.author Rodríguez-Aguado, E. es_ES
dc.contributor.author Rodriguez-Castellon, E. es_ES
dc.contributor.author López Nieto, José Manuel es_ES
dc.date.accessioned 2020-11-11T04:31:52Z
dc.date.available 2020-11-11T04:31:52Z
dc.date.issued 2018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154795
dc.description.abstract [EN] Solid acid catalysts based on WO3¿SiO2 and WO3¿ZrO2¿SiO2 were prepared by one-pot non-hydrolytic sol¿gel method and tested in the gas phase glycerol dehydration to acrolein. Their structural and textural characteristics were determined by X-ray diffraction (XRD), N2 adsorption, X-ray energy dispersive spectroscopy (XEDS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Their acid characteristics were studied by both temperature programmed desorption of ammonia (NH3-TPD) and FTIR of adsorbed pyridine. Under our operating conditions, all the catalysts were active and selective in the transformation of glycerol to acrolein, which was always the main reaction product. The high selectivity to acrolein is achieved on catalysts presenting a higher proportion of Brønsted acid sites. In addition, the role of oxygen in the feed on catalytic performance of these catalysts is also discussed. es_ES
dc.description.sponsorship The authors would like to acknowledge the DGICYT (CTQ2015-68951-C3-1-R, CTQ2015-68951-C3-3-R and SEV-2016-0683) and Secretary of State for International Cooperation in Spain (Project AP/040992/11) and Ministry of Higher Education and Scientific Research of Algeria for the National Exceptional Program for the fellowships. D. D. thanks MINECO and Severo Ochoa Excellence Program for his fellowship (SVP-2014-068669). Authors also would like to thank the Electron Microscopy Service of Universitat Politecnica de Valencia for their support. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof RSC Advances es_ES
dc.rights Reconocimiento (by) es_ES
dc.title Gas phase dehydration of glycerol to acrolein over WO3-based catalysts prepared by non-hydrolytic sol-gel synthesis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c8ra01575a es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MAEC//AP%2F040992%2F11/ES/PREPARACIÓN, CARACTERIZACIÓN Y PROPIEDADES CATALÍTICAS PARA REACCIONES CATALÍTICAS SOSTENIBLES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-68951-C3-3-R/ES/TRATAMIENTOS CATALITICOS AVANZADOS PARA LA VALORIZACION DE LA BIOMASA Y LA ELIMINACION DE RESIDUOS ASOCIADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SVP-2014-068669/ES/SVP-2014-068669/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-68951-C3-1-R/ES/TRATAMIENTOS CATALITICOS AVANZADOS PARA LA VALORIZACION DE LA BIOMASA Y LA ELIMINACION DE RESIDUOS ASOCIADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Nadji, L.; Masso Ramírez, A.; Delgado-Muñoz, D.; Isaadi, R.; Rodríguez-Aguado, E.; Rodriguez-Castellon, E.; López Nieto, JM. (2018). Gas phase dehydration of glycerol to acrolein over WO3-based catalysts prepared by non-hydrolytic sol-gel synthesis. RSC Advances. 8(24):13344-13352. https://doi.org/10.1039/c8ra01575a es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c8ra01575a es_ES
dc.description.upvformatpinicio 13344 es_ES
dc.description.upvformatpfin 13352 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 24 es_ES
dc.identifier.eissn 2046-2069 es_ES
dc.relation.pasarela S\376755 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Asuntos Exteriores y Cooperación es_ES
dc.contributor.funder Ministère de l'Enseignement Supérieur et de la Recherche Scientifique, Argelia es_ES
dc.description.references Besson, M., Gallezot, P., & Pinel, C. (2013). Conversion of Biomass into Chemicals over Metal Catalysts. Chemical Reviews, 114(3), 1827-1870. doi:10.1021/cr4002269 es_ES
dc.description.references Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492b es_ES
dc.description.references Talebian-Kiakalaieh, A., Amin, N. A. S., & Hezaveh, H. (2014). Glycerol for renewable acrolein production by catalytic dehydration. Renewable and Sustainable Energy Reviews, 40, 28-59. doi:10.1016/j.rser.2014.07.168 es_ES
dc.description.references Bagheri, S., Julkapli, N. M., & Yehye, W. A. (2015). Catalytic conversion of biodiesel derived raw glycerol to value added products. Renewable and Sustainable Energy Reviews, 41, 113-127. doi:10.1016/j.rser.2014.08.031 es_ES
dc.description.references Cespi, D., Passarini, F., Mastragostino, G., Vassura, I., Larocca, S., Iaconi, A., … Cavani, F. (2015). Glycerol as feedstock in the synthesis of chemicals: a life cycle analysis for acrolein production. Green Chemistry, 17(1), 343-355. doi:10.1039/c4gc01497a es_ES
dc.description.references Vasiliadou, E. S., & Lemonidou, A. A. (2014). Glycerol transformation to value added C3 diols: reaction mechanism, kinetic, and engineering aspects. Wiley Interdisciplinary Reviews: Energy and Environment, 4(6), 486-520. doi:10.1002/wene.159 es_ES
dc.description.references Katryniok, B., Paul, S., Bellière-Baca, V., Rey, P., & Dumeignil, F. (2010). Glycerol dehydration to acrolein in the context of new uses of glycerol. Green Chemistry, 12(12), 2079. doi:10.1039/c0gc00307g es_ES
dc.description.references Martin, A., Armbruster, U., & Atia, H. (2011). Recent developments in dehydration of glycerol toward acrolein over heteropolyacids. European Journal of Lipid Science and Technology, 114(1), 10-23. doi:10.1002/ejlt.201100047 es_ES
dc.description.references BURRINGTON, J., & GRASSELLI, R. (1979). Aspects of selective oxidation and ammoxidation mechanisms over bismuth molybdate catalysts. Journal of Catalysis, 59(1), 79-99. doi:10.1016/s0021-9517(79)80047-0 es_ES
dc.description.references BETTAHAR, M., COSTENTIN, G., SAVARY, L., & LAVALLEY, J. (1996). On the partial oxidation of propane and propylene on mixed metal oxide catalysts. Applied Catalysis A: General, 145(1-2), 1-48. doi:10.1016/0926-860x(96)00138-x es_ES
dc.description.references Sprenger, P., Kleist, W., & Grunwaldt, J.-D. (2017). Recent Advances in Selective Propylene Oxidation over Bismuth Molybdate Based Catalysts: Synthetic, Spectroscopic, and Theoretical Approaches. ACS Catalysis, 7(9), 5628-5642. doi:10.1021/acscatal.7b01149 es_ES
dc.description.references Bui, L., Chakrabarti, R., & Bhan, A. (2016). Mechanistic Origins of Unselective Oxidation Products in the Conversion of Propylene to Acrolein on Bi2Mo3O12. ACS Catalysis, 6(10), 6567-6580. doi:10.1021/acscatal.6b01830 es_ES
dc.description.references Carriço, C. S., Cruz, F. T., dos Santos, M. B., Oliveira, D. S., Pastore, H. O., Andrade, H. M. C., & Mascarenhas, A. J. S. (2016). MWW-type catalysts for gas phase glycerol dehydration to acrolein. Journal of Catalysis, 334, 34-41. doi:10.1016/j.jcat.2015.11.010 es_ES
dc.description.references Vieira, L. H., Carvalho, K. T. G., Urquieta-González, E. A., Pulcinelli, S. H., Santilli, C. V., & Martins, L. (2016). Effects of crystal size, acidity, and synthesis procedure on the catalytic performance of gallium and aluminum MFI zeolites in glycerol dehydration. Journal of Molecular Catalysis A: Chemical, 422, 148-157. doi:10.1016/j.molcata.2015.12.019 es_ES
dc.description.references Alhanash, A., Kozhevnikova, E. F., & Kozhevnikov, I. V. (2010). Gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt. Applied Catalysis A: General, 378(1), 11-18. doi:10.1016/j.apcata.2010.01.043 es_ES
dc.description.references Ding, J., Ma, T., Yan, C., Shao, R., Xu, W., & Yun, Z. (2018). Vapour Phase Dehydration of Glycerol to Acrolein Over Wells–Dawson Type H6P2W18O62 Supported on Mesoporous Silica Catalysts Prepared by Supercritical Impregnation. Journal of Nanoscience and Nanotechnology, 18(4), 2463-2471. doi:10.1166/jnn.2018.14396 es_ES
dc.description.references Shen, L., Yin, H., Wang, A., Feng, Y., Shen, Y., Wu, Z., & Jiang, T. (2012). Liquid phase dehydration of glycerol to acrolein catalyzed by silicotungstic, phosphotungstic, and phosphomolybdic acids. Chemical Engineering Journal, 180, 277-283. doi:10.1016/j.cej.2011.11.058 es_ES
dc.description.references Wang, F., Dubois, J.-L., & Ueda, W. (2010). Catalytic performance of vanadium pyrophosphate oxides (VPO) in the oxidative dehydration of glycerol. Applied Catalysis A: General, 376(1-2), 25-32. doi:10.1016/j.apcata.2009.11.031 es_ES
dc.description.references Deleplanque, J., Dubois, J.-L., Devaux, J.-F., & Ueda, W. (2010). Production of acrolein and acrylic acid through dehydration and oxydehydration of glycerol with mixed oxide catalysts. Catalysis Today, 157(1-4), 351-358. doi:10.1016/j.cattod.2010.04.012 es_ES
dc.description.references Lee, K. A., Ryoo, H., Ma, B. C., & Kim, Y. (2018). Acrolein Production by Gas-Phase Glycerol Dehydration Using PO4/Nb2O5 Catalysts. Journal of Nanoscience and Nanotechnology, 18(2), 1312-1315. doi:10.1166/jnn.2018.14897 es_ES
dc.description.references Ma, T., Ding, J., Shao, R., & Yun, Z. (2016). Catalytic conversion of glycerol to acrolein over MCM-41 by the grafting of phosphorus species. The Canadian Journal of Chemical Engineering, 94(5), 924-930. doi:10.1002/cjce.22457 es_ES
dc.description.references Foo, G. S., Wei, D., Sholl, D. S., & Sievers, C. (2014). Role of Lewis and Brønsted Acid Sites in the Dehydration of Glycerol over Niobia. ACS Catalysis, 4(9), 3180-3192. doi:10.1021/cs5006376 es_ES
dc.description.references Nogueira, F. G. E., Asencios, Y. J. O., Rodella, C. B., Porto, A. L. M., & Assaf, E. M. (2016). Alternative route for the synthesis of high surface-area η-Al2O3/Nb2O5 catalyst from aluminum waste. Materials Chemistry and Physics, 184, 23-30. doi:10.1016/j.matchemphys.2016.08.032 es_ES
dc.description.references Lauriol-Garbay, P., Millet, J. M. M., Loridant, S., Bellière-Baca, V., & Rey, P. (2011). New efficient and long-life catalyst for gas-phase glycerol dehydration to acrolein. Journal of Catalysis, 280(1), 68-76. doi:10.1016/j.jcat.2011.03.005 es_ES
dc.description.references Znaiguia, R., Brandhorst, L., Christin, N., Bellière Baca, V., Rey, P., Millet, J.-M. M., & Loridant, S. (2014). Toward longer life catalysts for dehydration of glycerol to acrolein. Microporous and Mesoporous Materials, 196, 97-103. doi:10.1016/j.micromeso.2014.04.053 es_ES
dc.description.references Sung, K.-H., & Cheng, S. (2017). Effect of Nb doping in WO3/ZrO2 catalysts on gas phase dehydration of glycerol to form acrolein. RSC Advances, 7(66), 41880-41888. doi:10.1039/c7ra08154e es_ES
dc.description.references Cecilia, J. A., García-Sancho, C., Mérida-Robles, J. M., Santamaría González, J., Moreno-Tost, R., & Maireles-Torres, P. (2016). WO3 supported on Zr doped mesoporous SBA-15 silica for glycerol dehydration to acrolein. Applied Catalysis A: General, 516, 30-40. doi:10.1016/j.apcata.2016.02.016 es_ES
dc.description.references Massa, M., Andersson, A., Finocchio, E., & Busca, G. (2013). Gas-phase dehydration of glycerol to acrolein over Al2O3-, SiO2-, and TiO2-supported Nb- and W-oxide catalysts. Journal of Catalysis, 307, 170-184. doi:10.1016/j.jcat.2013.07.022 es_ES
dc.description.references Massa, M., Andersson, A., Finocchio, E., Busca, G., Lenrick, F., & Wallenberg, L. R. (2013). Performance of ZrO 2 -supported Nb- and W-oxide in the gas-phase dehydration of glycerol to acrolein. Journal of Catalysis, 297, 93-109. doi:10.1016/j.jcat.2012.09.021 es_ES
dc.description.references Akizuki, M., Sano, K., & Oshima, Y. (2016). Effect of supercritical water on the stability of WO X /TiO 2 and NbO X /TiO 2 catalysts during glycerol dehydration. The Journal of Supercritical Fluids, 113, 158-165. doi:10.1016/j.supflu.2016.03.027 es_ES
dc.description.references Chai, S.-H., Tao, L.-Z., Yan, B., Vedrine, J. C., & Xu, B.-Q. (2014). Sustainable production of acrolein: effects of reaction variables, modifiers doping and ZrO2origin on the performance of WO3/ZrO2catalyst for the gas-phase dehydration of glycerol. RSC Adv., 4(9), 4619-4630. doi:10.1039/c3ra46511j es_ES
dc.description.references Dalil, M., Carnevali, D., Dubois, J.-L., & Patience, G. S. (2015). Transient acrolein selectivity and carbon deposition study of glycerol dehydration over WO3/TiO2 catalyst. Chemical Engineering Journal, 270, 557-563. doi:10.1016/j.cej.2015.02.058 es_ES
dc.description.references Dalil, M., Carnevali, D., Edake, M., Auroux, A., Dubois, J.-L., & Patience, G. S. (2016). Gas phase dehydration of glycerol to acrolein: Coke on WO3/TiO2 reduces by-products. Journal of Molecular Catalysis A: Chemical, 421, 146-155. doi:10.1016/j.molcata.2016.05.022 es_ES
dc.description.references Maksasithorn, S., Praserthdam, P., Suriye, K., Devillers, M., & Debecker, D. P. (2014). WO3-based catalysts prepared by non-hydrolytic sol-gel for the production of propene by cross-metathesis of ethene and 2-butene. Applied Catalysis A: General, 488, 200-207. doi:10.1016/j.apcata.2014.09.030 es_ES
dc.description.references Debecker, D. P., Hulea, V., & Mutin, P. H. (2013). Mesoporous mixed oxide catalysts via non-hydrolytic sol–gel: A review. Applied Catalysis A: General, 451, 192-206. doi:10.1016/j.apcata.2012.11.002 es_ES
dc.description.references Styskalik, A., Skoda, D., Barnes, C., & Pinkas, J. (2017). The Power of Non-Hydrolytic Sol-Gel Chemistry: A Review. Catalysts, 7(6), 168. doi:10.3390/catal7060168 es_ES
dc.description.references Djaoued, Y., Ashrit, P. V., Badilescu, S., & Brüning, R. (2003). Journal of Sol-Gel Science and Technology, 28(2), 235-244. doi:10.1023/a:1026089318607 es_ES
dc.description.references Oakton, E., Siddiqi, G., Fedorov, A., & Copéret, C. (2016). Tungsten oxide by non-hydrolytic sol–gel: effect of molecular precursor on morphology, phase and photocatalytic performance. New Journal of Chemistry, 40(1), 217-222. doi:10.1039/c5nj01973g es_ES
dc.description.references Debecker, D. P., Bouchmella, K., Stoyanova, M., Rodemerck, U., Gaigneaux, E. M., & Hubert Mutin, P. (2012). A non-hydrolytic sol–gel route to highly active MoO3–SiO2–Al2O3 metathesis catalysts. Catalysis Science & Technology, 2(6), 1157. doi:10.1039/c2cy00475e es_ES
dc.description.references Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145 es_ES
dc.description.references Soriano, M. D., Concepción, P., Nieto, J. M. L., Cavani, F., Guidetti, S., & Trevisanut, C. (2011). Tungsten-Vanadium mixed oxides for the oxidehydration of glycerol into acrylic acid. Green Chemistry, 13(10), 2954. doi:10.1039/c1gc15622e es_ES
dc.description.references Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society, 62(7), 1723-1732. doi:10.1021/ja01864a025 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem