- -

Gas phase dehydration of glycerol to acrolein over WO3-based catalysts prepared by non-hydrolytic sol-gel synthesis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Gas phase dehydration of glycerol to acrolein over WO3-based catalysts prepared by non-hydrolytic sol-gel synthesis

Mostrar el registro completo del ítem

Nadji, L.; Masso Ramírez, A.; Delgado-Muñoz, D.; Isaadi, R.; Rodríguez-Aguado, E.; Rodriguez-Castellon, E.; López Nieto, JM. (2018). Gas phase dehydration of glycerol to acrolein over WO3-based catalysts prepared by non-hydrolytic sol-gel synthesis. RSC Advances. 8(24):13344-13352. https://doi.org/10.1039/c8ra01575a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/154795

Ficheros en el ítem

Metadatos del ítem

Título: Gas phase dehydration of glycerol to acrolein over WO3-based catalysts prepared by non-hydrolytic sol-gel synthesis
Autor: Nadji, L. Masso Ramírez, Amada Delgado-Muñoz, Daniel Isaadi, R. Rodríguez-Aguado, E. Rodriguez-Castellon, E. López Nieto, José Manuel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Solid acid catalysts based on WO3¿SiO2 and WO3¿ZrO2¿SiO2 were prepared by one-pot non-hydrolytic sol¿gel method and tested in the gas phase glycerol dehydration to acrolein. Their structural and textural characteristics ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
RSC Advances. (eissn: 2046-2069 )
DOI: 10.1039/c8ra01575a
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c8ra01575a
Código del Proyecto:
info:eu-repo/grantAgreement/MAEC//AP%2F040992%2F11/ES/PREPARACIÓN, CARACTERIZACIÓN Y PROPIEDADES CATALÍTICAS PARA REACCIONES CATALÍTICAS SOSTENIBLES/
info:eu-repo/grantAgreement/MINECO//CTQ2015-68951-C3-3-R/ES/TRATAMIENTOS CATALITICOS AVANZADOS PARA LA VALORIZACION DE LA BIOMASA Y LA ELIMINACION DE RESIDUOS ASOCIADOS/
info:eu-repo/grantAgreement/MINECO//SVP-2014-068669/ES/SVP-2014-068669/
info:eu-repo/grantAgreement/MINECO//CTQ2015-68951-C3-1-R/ES/TRATAMIENTOS CATALITICOS AVANZADOS PARA LA VALORIZACION DE LA BIOMASA Y LA ELIMINACION DE RESIDUOS ASOCIADOS/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Agradecimientos:
The authors would like to acknowledge the DGICYT (CTQ2015-68951-C3-1-R, CTQ2015-68951-C3-3-R and SEV-2016-0683) and Secretary of State for International Cooperation in Spain (Project AP/040992/11) and Ministry of Higher ...[+]
Tipo: Artículo

References

Besson, M., Gallezot, P., & Pinel, C. (2013). Conversion of Biomass into Chemicals over Metal Catalysts. Chemical Reviews, 114(3), 1827-1870. doi:10.1021/cr4002269

Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492b

Talebian-Kiakalaieh, A., Amin, N. A. S., & Hezaveh, H. (2014). Glycerol for renewable acrolein production by catalytic dehydration. Renewable and Sustainable Energy Reviews, 40, 28-59. doi:10.1016/j.rser.2014.07.168 [+]
Besson, M., Gallezot, P., & Pinel, C. (2013). Conversion of Biomass into Chemicals over Metal Catalysts. Chemical Reviews, 114(3), 1827-1870. doi:10.1021/cr4002269

Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492b

Talebian-Kiakalaieh, A., Amin, N. A. S., & Hezaveh, H. (2014). Glycerol for renewable acrolein production by catalytic dehydration. Renewable and Sustainable Energy Reviews, 40, 28-59. doi:10.1016/j.rser.2014.07.168

Bagheri, S., Julkapli, N. M., & Yehye, W. A. (2015). Catalytic conversion of biodiesel derived raw glycerol to value added products. Renewable and Sustainable Energy Reviews, 41, 113-127. doi:10.1016/j.rser.2014.08.031

Cespi, D., Passarini, F., Mastragostino, G., Vassura, I., Larocca, S., Iaconi, A., … Cavani, F. (2015). Glycerol as feedstock in the synthesis of chemicals: a life cycle analysis for acrolein production. Green Chemistry, 17(1), 343-355. doi:10.1039/c4gc01497a

Vasiliadou, E. S., & Lemonidou, A. A. (2014). Glycerol transformation to value added C3 diols: reaction mechanism, kinetic, and engineering aspects. Wiley Interdisciplinary Reviews: Energy and Environment, 4(6), 486-520. doi:10.1002/wene.159

Katryniok, B., Paul, S., Bellière-Baca, V., Rey, P., & Dumeignil, F. (2010). Glycerol dehydration to acrolein in the context of new uses of glycerol. Green Chemistry, 12(12), 2079. doi:10.1039/c0gc00307g

Martin, A., Armbruster, U., & Atia, H. (2011). Recent developments in dehydration of glycerol toward acrolein over heteropolyacids. European Journal of Lipid Science and Technology, 114(1), 10-23. doi:10.1002/ejlt.201100047

BURRINGTON, J., & GRASSELLI, R. (1979). Aspects of selective oxidation and ammoxidation mechanisms over bismuth molybdate catalysts. Journal of Catalysis, 59(1), 79-99. doi:10.1016/s0021-9517(79)80047-0

BETTAHAR, M., COSTENTIN, G., SAVARY, L., & LAVALLEY, J. (1996). On the partial oxidation of propane and propylene on mixed metal oxide catalysts. Applied Catalysis A: General, 145(1-2), 1-48. doi:10.1016/0926-860x(96)00138-x

Sprenger, P., Kleist, W., & Grunwaldt, J.-D. (2017). Recent Advances in Selective Propylene Oxidation over Bismuth Molybdate Based Catalysts: Synthetic, Spectroscopic, and Theoretical Approaches. ACS Catalysis, 7(9), 5628-5642. doi:10.1021/acscatal.7b01149

Bui, L., Chakrabarti, R., & Bhan, A. (2016). Mechanistic Origins of Unselective Oxidation Products in the Conversion of Propylene to Acrolein on Bi2Mo3O12. ACS Catalysis, 6(10), 6567-6580. doi:10.1021/acscatal.6b01830

Carriço, C. S., Cruz, F. T., dos Santos, M. B., Oliveira, D. S., Pastore, H. O., Andrade, H. M. C., & Mascarenhas, A. J. S. (2016). MWW-type catalysts for gas phase glycerol dehydration to acrolein. Journal of Catalysis, 334, 34-41. doi:10.1016/j.jcat.2015.11.010

Vieira, L. H., Carvalho, K. T. G., Urquieta-González, E. A., Pulcinelli, S. H., Santilli, C. V., & Martins, L. (2016). Effects of crystal size, acidity, and synthesis procedure on the catalytic performance of gallium and aluminum MFI zeolites in glycerol dehydration. Journal of Molecular Catalysis A: Chemical, 422, 148-157. doi:10.1016/j.molcata.2015.12.019

Alhanash, A., Kozhevnikova, E. F., & Kozhevnikov, I. V. (2010). Gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt. Applied Catalysis A: General, 378(1), 11-18. doi:10.1016/j.apcata.2010.01.043

Ding, J., Ma, T., Yan, C., Shao, R., Xu, W., & Yun, Z. (2018). Vapour Phase Dehydration of Glycerol to Acrolein Over Wells–Dawson Type H6P2W18O62 Supported on Mesoporous Silica Catalysts Prepared by Supercritical Impregnation. Journal of Nanoscience and Nanotechnology, 18(4), 2463-2471. doi:10.1166/jnn.2018.14396

Shen, L., Yin, H., Wang, A., Feng, Y., Shen, Y., Wu, Z., & Jiang, T. (2012). Liquid phase dehydration of glycerol to acrolein catalyzed by silicotungstic, phosphotungstic, and phosphomolybdic acids. Chemical Engineering Journal, 180, 277-283. doi:10.1016/j.cej.2011.11.058

Wang, F., Dubois, J.-L., & Ueda, W. (2010). Catalytic performance of vanadium pyrophosphate oxides (VPO) in the oxidative dehydration of glycerol. Applied Catalysis A: General, 376(1-2), 25-32. doi:10.1016/j.apcata.2009.11.031

Deleplanque, J., Dubois, J.-L., Devaux, J.-F., & Ueda, W. (2010). Production of acrolein and acrylic acid through dehydration and oxydehydration of glycerol with mixed oxide catalysts. Catalysis Today, 157(1-4), 351-358. doi:10.1016/j.cattod.2010.04.012

Lee, K. A., Ryoo, H., Ma, B. C., & Kim, Y. (2018). Acrolein Production by Gas-Phase Glycerol Dehydration Using PO4/Nb2O5 Catalysts. Journal of Nanoscience and Nanotechnology, 18(2), 1312-1315. doi:10.1166/jnn.2018.14897

Ma, T., Ding, J., Shao, R., & Yun, Z. (2016). Catalytic conversion of glycerol to acrolein over MCM-41 by the grafting of phosphorus species. The Canadian Journal of Chemical Engineering, 94(5), 924-930. doi:10.1002/cjce.22457

Foo, G. S., Wei, D., Sholl, D. S., & Sievers, C. (2014). Role of Lewis and Brønsted Acid Sites in the Dehydration of Glycerol over Niobia. ACS Catalysis, 4(9), 3180-3192. doi:10.1021/cs5006376

Nogueira, F. G. E., Asencios, Y. J. O., Rodella, C. B., Porto, A. L. M., & Assaf, E. M. (2016). Alternative route for the synthesis of high surface-area η-Al2O3/Nb2O5 catalyst from aluminum waste. Materials Chemistry and Physics, 184, 23-30. doi:10.1016/j.matchemphys.2016.08.032

Lauriol-Garbay, P., Millet, J. M. M., Loridant, S., Bellière-Baca, V., & Rey, P. (2011). New efficient and long-life catalyst for gas-phase glycerol dehydration to acrolein. Journal of Catalysis, 280(1), 68-76. doi:10.1016/j.jcat.2011.03.005

Znaiguia, R., Brandhorst, L., Christin, N., Bellière Baca, V., Rey, P., Millet, J.-M. M., & Loridant, S. (2014). Toward longer life catalysts for dehydration of glycerol to acrolein. Microporous and Mesoporous Materials, 196, 97-103. doi:10.1016/j.micromeso.2014.04.053

Sung, K.-H., & Cheng, S. (2017). Effect of Nb doping in WO3/ZrO2 catalysts on gas phase dehydration of glycerol to form acrolein. RSC Advances, 7(66), 41880-41888. doi:10.1039/c7ra08154e

Cecilia, J. A., García-Sancho, C., Mérida-Robles, J. M., Santamaría González, J., Moreno-Tost, R., & Maireles-Torres, P. (2016). WO3 supported on Zr doped mesoporous SBA-15 silica for glycerol dehydration to acrolein. Applied Catalysis A: General, 516, 30-40. doi:10.1016/j.apcata.2016.02.016

Massa, M., Andersson, A., Finocchio, E., & Busca, G. (2013). Gas-phase dehydration of glycerol to acrolein over Al2O3-, SiO2-, and TiO2-supported Nb- and W-oxide catalysts. Journal of Catalysis, 307, 170-184. doi:10.1016/j.jcat.2013.07.022

Massa, M., Andersson, A., Finocchio, E., Busca, G., Lenrick, F., & Wallenberg, L. R. (2013). Performance of ZrO 2 -supported Nb- and W-oxide in the gas-phase dehydration of glycerol to acrolein. Journal of Catalysis, 297, 93-109. doi:10.1016/j.jcat.2012.09.021

Akizuki, M., Sano, K., & Oshima, Y. (2016). Effect of supercritical water on the stability of WO X /TiO 2 and NbO X /TiO 2 catalysts during glycerol dehydration. The Journal of Supercritical Fluids, 113, 158-165. doi:10.1016/j.supflu.2016.03.027

Chai, S.-H., Tao, L.-Z., Yan, B., Vedrine, J. C., & Xu, B.-Q. (2014). Sustainable production of acrolein: effects of reaction variables, modifiers doping and ZrO2origin on the performance of WO3/ZrO2catalyst for the gas-phase dehydration of glycerol. RSC Adv., 4(9), 4619-4630. doi:10.1039/c3ra46511j

Dalil, M., Carnevali, D., Dubois, J.-L., & Patience, G. S. (2015). Transient acrolein selectivity and carbon deposition study of glycerol dehydration over WO3/TiO2 catalyst. Chemical Engineering Journal, 270, 557-563. doi:10.1016/j.cej.2015.02.058

Dalil, M., Carnevali, D., Edake, M., Auroux, A., Dubois, J.-L., & Patience, G. S. (2016). Gas phase dehydration of glycerol to acrolein: Coke on WO3/TiO2 reduces by-products. Journal of Molecular Catalysis A: Chemical, 421, 146-155. doi:10.1016/j.molcata.2016.05.022

Maksasithorn, S., Praserthdam, P., Suriye, K., Devillers, M., & Debecker, D. P. (2014). WO3-based catalysts prepared by non-hydrolytic sol-gel for the production of propene by cross-metathesis of ethene and 2-butene. Applied Catalysis A: General, 488, 200-207. doi:10.1016/j.apcata.2014.09.030

Debecker, D. P., Hulea, V., & Mutin, P. H. (2013). Mesoporous mixed oxide catalysts via non-hydrolytic sol–gel: A review. Applied Catalysis A: General, 451, 192-206. doi:10.1016/j.apcata.2012.11.002

Styskalik, A., Skoda, D., Barnes, C., & Pinkas, J. (2017). The Power of Non-Hydrolytic Sol-Gel Chemistry: A Review. Catalysts, 7(6), 168. doi:10.3390/catal7060168

Djaoued, Y., Ashrit, P. V., Badilescu, S., & Brüning, R. (2003). Journal of Sol-Gel Science and Technology, 28(2), 235-244. doi:10.1023/a:1026089318607

Oakton, E., Siddiqi, G., Fedorov, A., & Copéret, C. (2016). Tungsten oxide by non-hydrolytic sol–gel: effect of molecular precursor on morphology, phase and photocatalytic performance. New Journal of Chemistry, 40(1), 217-222. doi:10.1039/c5nj01973g

Debecker, D. P., Bouchmella, K., Stoyanova, M., Rodemerck, U., Gaigneaux, E. M., & Hubert Mutin, P. (2012). A non-hydrolytic sol–gel route to highly active MoO3–SiO2–Al2O3 metathesis catalysts. Catalysis Science & Technology, 2(6), 1157. doi:10.1039/c2cy00475e

Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145

Soriano, M. D., Concepción, P., Nieto, J. M. L., Cavani, F., Guidetti, S., & Trevisanut, C. (2011). Tungsten-Vanadium mixed oxides for the oxidehydration of glycerol into acrylic acid. Green Chemistry, 13(10), 2954. doi:10.1039/c1gc15622e

Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society, 62(7), 1723-1732. doi:10.1021/ja01864a025

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem