Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z
Díaz, U., Brunel, D., & Corma, A. (2013). Catalysis using multifunctional organosiliceous hybrid materials. Chemical Society Reviews, 42(9), 4083. doi:10.1039/c2cs35385g
Sanchez, C., Julián, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15(35-36), 3559. doi:10.1039/b509097k
[+]
Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z
Díaz, U., Brunel, D., & Corma, A. (2013). Catalysis using multifunctional organosiliceous hybrid materials. Chemical Society Reviews, 42(9), 4083. doi:10.1039/c2cs35385g
Sanchez, C., Julián, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15(35-36), 3559. doi:10.1039/b509097k
Kapoor, M. P., Sinha, A. K., Seelan, S., Inagaki, S., Tsubota, S., Yoshida, H., & Haruta, M. (2002). Hydrophobicity induced vapor-phase oxidation of propene over gold supported on titanium incorporated hybrid mesoporous silsesquioxane. Chemical Communications, (23), 2902-2903. doi:10.1039/b209392h
Collins, D. J., & Zhou, H.-C. (2007). Hydrogen storage in metal–organic frameworks. Journal of Materials Chemistry, 17(30), 3154. doi:10.1039/b702858j
Dag, Ö., Yoshina-Ishii, C., Asefa, T., MacLachlan, M. J., Grondey, H., Coombs, N., & Ozin, G. A. (2001). Oriented Periodic Mesoporous Organosilica (PMO) Film with Organic Functionality Inside the Channel Walls. Advanced Functional Materials, 11(3), 213-217. doi:10.1002/1616-3028(200106)11:3<213::aid-adfm213>3.0.co;2-c
Shea, K. J., & Loy, D. A. (2001). Bridged Polysilsesquioxanes. Molecular-Engineered Hybrid Organic−Inorganic Materials. Chemistry of Materials, 13(10), 3306-3319. doi:10.1021/cm011074s
Harbuzaru, B. V., Corma, A., Rey, F., Atienzar, P., Jordá, J. L., García, H., … Rocha, J. (2008). Metal–Organic Nanoporous Structures with Anisotropic Photoluminescence and Magnetic Properties and Their Use as Sensors. Angewandte Chemie International Edition, 47(6), 1080-1083. doi:10.1002/anie.200704702
Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(20), 3216-3251. doi:10.1002/anie.200503075
Stein, A., Melde, B. J., & Schroden, R. C. (2000). Hybrid Inorganic-Organic Mesoporous Silicates—Nanoscopic Reactors Coming of Age. Advanced Materials, 12(19), 1403-1419. doi:10.1002/1521-4095(200010)12:19<1403::aid-adma1403>3.0.co;2-x
Reale, E., Leyva, A., Corma, A., Martínez, C., García, H., & Rey, F. (2005). A fluoride-catalyzed sol–gel route to catalytically active non-ordered mesoporous silica materials in the absence of surfactants. Journal of Materials Chemistry, 15(17), 1742. doi:10.1039/b415066j
Lim, M. H., Blanford, C. F., & Stein, A. (1997). Synthesis and Characterization of a Reactive Vinyl-Functionalized MCM-41: Probing the Internal Pore Structure by a Bromination Reaction. Journal of the American Chemical Society, 119(17), 4090-4091. doi:10.1021/ja9638824
Winter, R., Hua, D.-W., Thiyagarajan, P., & Jonas, J. (1989). A SANS study of the effect of catalyst on the growth process of silica gels. Journal of Non-Crystalline Solids, 108(2), 137-142. doi:10.1016/0022-3093(89)90575-9
González-Arellano, C., Corma, A., Iglesias, M., & Sánchez, F. (2004). Improved Palladium and Nickel Catalysts Heterogenised on Oxidic Supports (Silica, MCM-41, ITQ-2, ITQ-6). Advanced Synthesis & Catalysis, 346(11), 1316-1328. doi:10.1002/adsc.200404029
Doustkhah, E., Lin, J., Rostamnia, S., Len, C., Luque, R., Luo, X., … Ide, Y. (2018). Development of Sulfonic-Acid-Functionalized Mesoporous Materials: Synthesis and Catalytic Applications. Chemistry - A European Journal, 25(7), 1614-1635. doi:10.1002/chem.201802183
MBARAKA, I., & SHANKS, B. (2005). Design of multifunctionalized mesoporous silicas for esterification of fatty acid. Journal of Catalysis, 229(2), 365-373. doi:10.1016/j.jcat.2004.11.008
Zhou, W.-J., Fang, L., Fan, Z., Albela, B., Bonneviot, L., De Campo, F., … Clacens, J.-M. (2014). Tunable Catalysts for Solvent-Free Biphasic Systems: Pickering Interfacial Catalysts over Amphiphilic Silica Nanoparticles. Journal of the American Chemical Society, 136(13), 4869-4872. doi:10.1021/ja501019n
Gianotti, E., Diaz, U., Velty, A., & Corma, A. (2013). Designing bifunctional acid–base mesoporous hybrid catalysts for cascade reactions. Catalysis Science & Technology, 3(10), 2677. doi:10.1039/c3cy00269a
Posternak, A. G., Garlyauskayte, R. Y., & Yagupolskii, L. M. (2009). A novel Brønsted acid catalyst for Friedel–Crafts acylation. Tetrahedron Letters, 50(4), 446-447. doi:10.1016/j.tetlet.2008.11.038
Olah, G. A., Arvanaghi, M., & Krishnamurthy, V. V. (1983). Heterogeneous catalysis by solid superacids. 17. Polymeric perfluorinated resin sulfonic acid (Nafion-H) catalyzed Fries rearrangement of aryl esters. The Journal of Organic Chemistry, 48(19), 3359-3360. doi:10.1021/jo00167a052
Olah, G. A., Laali, K., & Mehrotra, A. K. (1983). Catalysis by solid superacids. 18. Nafion-H perfluorinated resin sulfonic acid promoted deacetylation and decarboxylation of aromatics. The Journal of Organic Chemistry, 48(19), 3360-3362. doi:10.1021/jo00167a053
Armor, J. N. (2001). New catalytic technology commercialized in the USA during the 1990s. Applied Catalysis A: General, 222(1-2), 407-426. doi:10.1016/s0926-860x(01)00846-8
Miletto, I., Paul, G., Chapman, S., Gatti, G., Marchese, L., Raja, R., & Gianotti, E. (2017). Mesoporous Silica Scaffolds as Precursor to Drive the Formation of Hierarchical SAPO-34 with Tunable Acid Properties. Chemistry - A European Journal, 23(41), 9952-9961. doi:10.1002/chem.201701978
Erigoni, A., Newland, S. H., Paul, G., Marchese, L., Raja, R., & Gianotti, E. (2016). Creating Accessible Active Sites in Hierarchical MFI Zeolites for Low-Temperature Acid Catalysis. ChemCatChem, 8(19), 3161-3169. doi:10.1002/cctc.201600729
Bordiga, S., Ugliengo, P., Damin, A., Lamberti, C., Spoto, G., Zecchina, A., … Rivetti, F. (2001). Topics in Catalysis, 15(1), 43-52. doi:10.1023/a:1009019829376
Paul, G., Bisio, C., Braschi, I., Cossi, M., Gatti, G., Gianotti, E., & Marchese, L. (2018). Combined solid-state NMR, FT-IR and computational studies on layered and porous materials. Chemical Society Reviews, 47(15), 5684-5739. doi:10.1039/c7cs00358g
G. Socrates , Infrared and Raman characteristic group frequencies: tables and charts , Wiley , Chichester , repr. as paperback., 3rd edn, 2010
Holm, M. S., Svelle, S., Joensen, F., Beato, P., Christensen, C. H., Bordiga, S., & Bjørgen, M. (2009). Assessing the acid properties of desilicated ZSM-5 by FTIR using CO and 2,4,6-trimethylpyridine (collidine) as molecular probes. Applied Catalysis A: General, 356(1), 23-30. doi:10.1016/j.apcata.2008.11.033
Gianotti, E., Dellarocca, V., Marchese, L., Martra, G., Coluccia, S., & Maschmeyer, T. (2002). NH3adsorption on MCM-41 and Ti-grafted MCM-41. FTIR, DR UV–Vis–NIR and photoluminescence studies. Phys. Chem. Chem. Phys., 4(24), 6109-6115. doi:10.1039/b207231a
Zecchina, A., Marchese, L., Bordiga, S., Pazè, C., & Gianotti, E. (1997). Vibrational Spectroscopy of NH4+Ions in Zeolitic Materials: An IR Study. The Journal of Physical Chemistry B, 101(48), 10128-10135. doi:10.1021/jp9717554
Paul, G., Musso, G. E., Bottinelli, E., Cossi, M., Marchese, L., & Berlier, G. (2017). Investigating the Interaction of Water Vapour with Aminopropyl Groups on the Surface of Mesoporous Silica Nanoparticles. ChemPhysChem, 18(7), 839-849. doi:10.1002/cphc.201601135
Sharifi, M., Wark, M., Freude, D., & Haase, J. (2012). Highly proton conducting sulfonic acid functionalized mesoporous materials studied by impedance spectroscopy, MAS NMR spectroscopy and MAS PFG NMR diffusometry. Microporous and Mesoporous Materials, 156, 80-89. doi:10.1016/j.micromeso.2012.02.019
Trickett, C. A., Osborn Popp, T. M., Su, J., Yan, C., Weisberg, J., Huq, A., … Yaghi, O. M. (2018). Identification of the strong Brønsted acid site in a metal–organic framework solid acid catalyst. Nature Chemistry, 11(2), 170-176. doi:10.1038/s41557-018-0171-z
Zheng, A., Li, S., Liu, S.-B., & Deng, F. (2016). Acidic Properties and Structure–Activity Correlations of Solid Acid Catalysts Revealed by Solid-State NMR Spectroscopy. Accounts of Chemical Research, 49(4), 655-663. doi:10.1021/acs.accounts.6b00007
Zheng, A., Liu, S.-B., & Deng, F. (2013). Acidity characterization of heterogeneous catalysts by solid-state NMR spectroscopy using probe molecules. Solid State Nuclear Magnetic Resonance, 55-56, 12-27. doi:10.1016/j.ssnmr.2013.09.001
Liu, F., Yi, X., Chen, W., Liu, Z., Chen, W., Qi, C.-Z., … Zheng, A. (2019). Developing two-dimensional solid superacids with enhanced mass transport, extremely high acid strength and superior catalytic performance. Chemical Science, 10(23), 5875-5883. doi:10.1039/c9sc01988j
Zheng, A., Liu, S.-B., & Deng, F. (2017). 31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts. Chemical Reviews, 117(19), 12475-12531. doi:10.1021/acs.chemrev.7b00289
P. G. Wuts and T. W.Greene , Greene's protective groups in organic synthesis , Wiley , 2006
Firouzabadi, H., Iranpoor, N., & Karimi, B. (1999). Zirconium Tetrachloride (ZrCl4) Catalyzed Highly Chemoselective and Efficient Acetalization of Carbonyl Compounds. Synlett, 1999(3), 321-323. doi:10.1055/s-1999-2605
[-]