- -

Acid properties of organosiliceous hybrid materials based on pendant (fluoro)aryl-sulfonic groups through a spectroscopic study with probe molecules

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Acid properties of organosiliceous hybrid materials based on pendant (fluoro)aryl-sulfonic groups through a spectroscopic study with probe molecules

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Erigoni, Andrea es_ES
dc.contributor.author Paul, Geo es_ES
dc.contributor.author Meazza, Marta es_ES
dc.contributor.author Hernández Soto, María Consuelo es_ES
dc.contributor.author Miletto, Ivana es_ES
dc.contributor.author Rios, Ramon es_ES
dc.contributor.author Segarra-Almela, Mª De La Candelaria es_ES
dc.contributor.author Marchese, Leonardo es_ES
dc.contributor.author Raja, Robert es_ES
dc.contributor.author Rey Garcia, Fernando es_ES
dc.contributor.author Gianotti, Enrica es_ES
dc.contributor.author DÍAZ MORALES, URBANO MANUEL es_ES
dc.date.accessioned 2020-11-11T04:31:58Z
dc.date.available 2020-11-11T04:31:58Z
dc.date.issued 2019-11-21 es_ES
dc.identifier.issn 2044-4753 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154797
dc.description.abstract [EN] Two different heterogeneous catalysts carrying aryl-sulfonic moieties, in which the aromatic ring was either fluorinated or not, were successfully synthesized. The multi-step synthetic approaches implemented involved the synthesis of the silyl-derivative, template-free one-pot co-condensation (at low temperature and neutral pH) and tethering reaction. A multi-technique approach was implemented to characterize the hybrid organic-inorganic catalysts involving TGA, N-2 physisorption analysis, FTIR spectroscopy, and ss MAS NMR (H-1, C-13, Si-29) spectroscopy. Specifically, the acidity of the organosiliceous hybrid materials was studied through the adsorption of probe molecules (i.e. CO at 77 K and NH3 and TMPO at room temperature) and a combination of FTIR and ss MAS NMR spectroscopy. The catalytic activity of the two hybrids was tested in the acetal formation reaction between benzaldehyde and ethylene glycol. Preliminary results indicated superior performances for the fluoro-aryl-sulfonic acid, compared to the non-fluorinated sample. The findings hereby reported open new avenues for the design of heterogeneous sulfonic acids with superior reactivity in acid-catalyzed reactions. Moreover, through the implementation of spectroscopic studies, using probe molecules, it was possible to investigate in detail the acidic properties of hybrid organosiliceous materials. es_ES
dc.description.sponsorship AE acknowledge "la Caixa" foundation for the PhD scholarship. The authors are grateful for financial support from the European Union by the MULTY2HYCAT EU-Horizon 2020 funded project under grant agreement no. 720783. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Catalysis Science & Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.title Acid properties of organosiliceous hybrid materials based on pendant (fluoro)aryl-sulfonic groups through a spectroscopic study with probe molecules es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c9cy01609k es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/720783/EU/MULTI-site organic-inorganic HYbrid CATalysts for MULTI-step chemical processes/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Erigoni, A.; Paul, G.; Meazza, M.; Hernández Soto, MC.; Miletto, I.; Rios, R.; Segarra-Almela, MDLC.... (2019). Acid properties of organosiliceous hybrid materials based on pendant (fluoro)aryl-sulfonic groups through a spectroscopic study with probe molecules. Catalysis Science & Technology. 9(22):6308-6317. https://doi.org/10.1039/c9cy01609k es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c9cy01609k es_ES
dc.description.upvformatpinicio 6308 es_ES
dc.description.upvformatpfin 6317 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 22 es_ES
dc.relation.pasarela S\407659 es_ES
dc.contributor.funder Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona es_ES
dc.description.references Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z es_ES
dc.description.references Díaz, U., Brunel, D., & Corma, A. (2013). Catalysis using multifunctional organosiliceous hybrid materials. Chemical Society Reviews, 42(9), 4083. doi:10.1039/c2cs35385g es_ES
dc.description.references Sanchez, C., Julián, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15(35-36), 3559. doi:10.1039/b509097k es_ES
dc.description.references Kapoor, M. P., Sinha, A. K., Seelan, S., Inagaki, S., Tsubota, S., Yoshida, H., & Haruta, M. (2002). Hydrophobicity induced vapor-phase oxidation of propene over gold supported on titanium incorporated hybrid mesoporous silsesquioxane. Chemical Communications, (23), 2902-2903. doi:10.1039/b209392h es_ES
dc.description.references Collins, D. J., & Zhou, H.-C. (2007). Hydrogen storage in metal–organic frameworks. Journal of Materials Chemistry, 17(30), 3154. doi:10.1039/b702858j es_ES
dc.description.references Dag, Ö., Yoshina-Ishii, C., Asefa, T., MacLachlan, M. J., Grondey, H., Coombs, N., & Ozin, G. A. (2001). Oriented Periodic Mesoporous Organosilica (PMO) Film with Organic Functionality Inside the Channel Walls. Advanced Functional Materials, 11(3), 213-217. doi:10.1002/1616-3028(200106)11:3<213::aid-adfm213>3.0.co;2-c es_ES
dc.description.references Shea, K. J., & Loy, D. A. (2001). Bridged Polysilsesquioxanes. Molecular-Engineered Hybrid Organic−Inorganic Materials. Chemistry of Materials, 13(10), 3306-3319. doi:10.1021/cm011074s es_ES
dc.description.references Harbuzaru, B. V., Corma, A., Rey, F., Atienzar, P., Jordá, J. L., García, H., … Rocha, J. (2008). Metal–Organic Nanoporous Structures with Anisotropic Photoluminescence and Magnetic Properties and Their Use as Sensors. Angewandte Chemie International Edition, 47(6), 1080-1083. doi:10.1002/anie.200704702 es_ES
dc.description.references Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(20), 3216-3251. doi:10.1002/anie.200503075 es_ES
dc.description.references Stein, A., Melde, B. J., & Schroden, R. C. (2000). Hybrid Inorganic-Organic Mesoporous Silicates—Nanoscopic Reactors Coming of Age. Advanced Materials, 12(19), 1403-1419. doi:10.1002/1521-4095(200010)12:19<1403::aid-adma1403>3.0.co;2-x es_ES
dc.description.references Reale, E., Leyva, A., Corma, A., Martínez, C., García, H., & Rey, F. (2005). A fluoride-catalyzed sol–gel route to catalytically active non-ordered mesoporous silica materials in the absence of surfactants. Journal of Materials Chemistry, 15(17), 1742. doi:10.1039/b415066j es_ES
dc.description.references Lim, M. H., Blanford, C. F., & Stein, A. (1997). Synthesis and Characterization of a Reactive Vinyl-Functionalized MCM-41:  Probing the Internal Pore Structure by a Bromination Reaction. Journal of the American Chemical Society, 119(17), 4090-4091. doi:10.1021/ja9638824 es_ES
dc.description.references Winter, R., Hua, D.-W., Thiyagarajan, P., & Jonas, J. (1989). A SANS study of the effect of catalyst on the growth process of silica gels. Journal of Non-Crystalline Solids, 108(2), 137-142. doi:10.1016/0022-3093(89)90575-9 es_ES
dc.description.references González-Arellano, C., Corma, A., Iglesias, M., & Sánchez, F. (2004). Improved Palladium and Nickel Catalysts Heterogenised on Oxidic Supports (Silica, MCM-41, ITQ-2, ITQ-6). Advanced Synthesis & Catalysis, 346(11), 1316-1328. doi:10.1002/adsc.200404029 es_ES
dc.description.references Doustkhah, E., Lin, J., Rostamnia, S., Len, C., Luque, R., Luo, X., … Ide, Y. (2018). Development of Sulfonic-Acid-Functionalized Mesoporous Materials: Synthesis and Catalytic Applications. Chemistry - A European Journal, 25(7), 1614-1635. doi:10.1002/chem.201802183 es_ES
dc.description.references MBARAKA, I., & SHANKS, B. (2005). Design of multifunctionalized mesoporous silicas for esterification of fatty acid. Journal of Catalysis, 229(2), 365-373. doi:10.1016/j.jcat.2004.11.008 es_ES
dc.description.references Zhou, W.-J., Fang, L., Fan, Z., Albela, B., Bonneviot, L., De Campo, F., … Clacens, J.-M. (2014). Tunable Catalysts for Solvent-Free Biphasic Systems: Pickering Interfacial Catalysts over Amphiphilic Silica Nanoparticles. Journal of the American Chemical Society, 136(13), 4869-4872. doi:10.1021/ja501019n es_ES
dc.description.references Gianotti, E., Diaz, U., Velty, A., & Corma, A. (2013). Designing bifunctional acid–base mesoporous hybrid catalysts for cascade reactions. Catalysis Science & Technology, 3(10), 2677. doi:10.1039/c3cy00269a es_ES
dc.description.references Posternak, A. G., Garlyauskayte, R. Y., & Yagupolskii, L. M. (2009). A novel Brønsted acid catalyst for Friedel–Crafts acylation. Tetrahedron Letters, 50(4), 446-447. doi:10.1016/j.tetlet.2008.11.038 es_ES
dc.description.references Olah, G. A., Arvanaghi, M., & Krishnamurthy, V. V. (1983). Heterogeneous catalysis by solid superacids. 17. Polymeric perfluorinated resin sulfonic acid (Nafion-H) catalyzed Fries rearrangement of aryl esters. The Journal of Organic Chemistry, 48(19), 3359-3360. doi:10.1021/jo00167a052 es_ES
dc.description.references Olah, G. A., Laali, K., & Mehrotra, A. K. (1983). Catalysis by solid superacids. 18. Nafion-H perfluorinated resin sulfonic acid promoted deacetylation and decarboxylation of aromatics. The Journal of Organic Chemistry, 48(19), 3360-3362. doi:10.1021/jo00167a053 es_ES
dc.description.references Armor, J. N. (2001). New catalytic technology commercialized in the USA during the 1990s. Applied Catalysis A: General, 222(1-2), 407-426. doi:10.1016/s0926-860x(01)00846-8 es_ES
dc.description.references Miletto, I., Paul, G., Chapman, S., Gatti, G., Marchese, L., Raja, R., & Gianotti, E. (2017). Mesoporous Silica Scaffolds as Precursor to Drive the Formation of Hierarchical SAPO-34 with Tunable Acid Properties. Chemistry - A European Journal, 23(41), 9952-9961. doi:10.1002/chem.201701978 es_ES
dc.description.references Erigoni, A., Newland, S. H., Paul, G., Marchese, L., Raja, R., & Gianotti, E. (2016). Creating Accessible Active Sites in Hierarchical MFI Zeolites for Low-Temperature Acid Catalysis. ChemCatChem, 8(19), 3161-3169. doi:10.1002/cctc.201600729 es_ES
dc.description.references Bordiga, S., Ugliengo, P., Damin, A., Lamberti, C., Spoto, G., Zecchina, A., … Rivetti, F. (2001). Topics in Catalysis, 15(1), 43-52. doi:10.1023/a:1009019829376 es_ES
dc.description.references Paul, G., Bisio, C., Braschi, I., Cossi, M., Gatti, G., Gianotti, E., & Marchese, L. (2018). Combined solid-state NMR, FT-IR and computational studies on layered and porous materials. Chemical Society Reviews, 47(15), 5684-5739. doi:10.1039/c7cs00358g es_ES
dc.description.references G. Socrates , Infrared and Raman characteristic group frequencies: tables and charts , Wiley , Chichester , repr. as paperback., 3rd edn, 2010 es_ES
dc.description.references Holm, M. S., Svelle, S., Joensen, F., Beato, P., Christensen, C. H., Bordiga, S., & Bjørgen, M. (2009). Assessing the acid properties of desilicated ZSM-5 by FTIR using CO and 2,4,6-trimethylpyridine (collidine) as molecular probes. Applied Catalysis A: General, 356(1), 23-30. doi:10.1016/j.apcata.2008.11.033 es_ES
dc.description.references Gianotti, E., Dellarocca, V., Marchese, L., Martra, G., Coluccia, S., & Maschmeyer, T. (2002). NH3adsorption on MCM-41 and Ti-grafted MCM-41. FTIR, DR UV–Vis–NIR and photoluminescence studies. Phys. Chem. Chem. Phys., 4(24), 6109-6115. doi:10.1039/b207231a es_ES
dc.description.references Zecchina, A., Marchese, L., Bordiga, S., Pazè, C., & Gianotti, E. (1997). Vibrational Spectroscopy of NH4+Ions in Zeolitic Materials:  An IR Study. The Journal of Physical Chemistry B, 101(48), 10128-10135. doi:10.1021/jp9717554 es_ES
dc.description.references Paul, G., Musso, G. E., Bottinelli, E., Cossi, M., Marchese, L., & Berlier, G. (2017). Investigating the Interaction of Water Vapour with Aminopropyl Groups on the Surface of Mesoporous Silica Nanoparticles. ChemPhysChem, 18(7), 839-849. doi:10.1002/cphc.201601135 es_ES
dc.description.references Sharifi, M., Wark, M., Freude, D., & Haase, J. (2012). Highly proton conducting sulfonic acid functionalized mesoporous materials studied by impedance spectroscopy, MAS NMR spectroscopy and MAS PFG NMR diffusometry. Microporous and Mesoporous Materials, 156, 80-89. doi:10.1016/j.micromeso.2012.02.019 es_ES
dc.description.references Trickett, C. A., Osborn Popp, T. M., Su, J., Yan, C., Weisberg, J., Huq, A., … Yaghi, O. M. (2018). Identification of the strong Brønsted acid site in a metal–organic framework solid acid catalyst. Nature Chemistry, 11(2), 170-176. doi:10.1038/s41557-018-0171-z es_ES
dc.description.references Zheng, A., Li, S., Liu, S.-B., & Deng, F. (2016). Acidic Properties and Structure–Activity Correlations of Solid Acid Catalysts Revealed by Solid-State NMR Spectroscopy. Accounts of Chemical Research, 49(4), 655-663. doi:10.1021/acs.accounts.6b00007 es_ES
dc.description.references Zheng, A., Liu, S.-B., & Deng, F. (2013). Acidity characterization of heterogeneous catalysts by solid-state NMR spectroscopy using probe molecules. Solid State Nuclear Magnetic Resonance, 55-56, 12-27. doi:10.1016/j.ssnmr.2013.09.001 es_ES
dc.description.references Liu, F., Yi, X., Chen, W., Liu, Z., Chen, W., Qi, C.-Z., … Zheng, A. (2019). Developing two-dimensional solid superacids with enhanced mass transport, extremely high acid strength and superior catalytic performance. Chemical Science, 10(23), 5875-5883. doi:10.1039/c9sc01988j es_ES
dc.description.references Zheng, A., Liu, S.-B., & Deng, F. (2017). 31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts. Chemical Reviews, 117(19), 12475-12531. doi:10.1021/acs.chemrev.7b00289 es_ES
dc.description.references P. G. Wuts and T. W.Greene , Greene's protective groups in organic synthesis , Wiley , 2006 es_ES
dc.description.references Firouzabadi, H., Iranpoor, N., & Karimi, B. (1999). Zirconium Tetrachloride (ZrCl4) Catalyzed Highly Chemoselective and Efficient Acetalization of Carbonyl Compounds. Synlett, 1999(3), 321-323. doi:10.1055/s-1999-2605 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem