Mostrar el registro sencillo del ítem
dc.contributor.author | Erigoni, Andrea | es_ES |
dc.contributor.author | Paul, Geo | es_ES |
dc.contributor.author | Meazza, Marta | es_ES |
dc.contributor.author | Hernández Soto, María Consuelo | es_ES |
dc.contributor.author | Miletto, Ivana | es_ES |
dc.contributor.author | Rios, Ramon | es_ES |
dc.contributor.author | Segarra-Almela, Mª De La Candelaria | es_ES |
dc.contributor.author | Marchese, Leonardo | es_ES |
dc.contributor.author | Raja, Robert | es_ES |
dc.contributor.author | Rey Garcia, Fernando | es_ES |
dc.contributor.author | Gianotti, Enrica | es_ES |
dc.contributor.author | DÍAZ MORALES, URBANO MANUEL | es_ES |
dc.date.accessioned | 2020-11-11T04:31:58Z | |
dc.date.available | 2020-11-11T04:31:58Z | |
dc.date.issued | 2019-11-21 | es_ES |
dc.identifier.issn | 2044-4753 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/154797 | |
dc.description.abstract | [EN] Two different heterogeneous catalysts carrying aryl-sulfonic moieties, in which the aromatic ring was either fluorinated or not, were successfully synthesized. The multi-step synthetic approaches implemented involved the synthesis of the silyl-derivative, template-free one-pot co-condensation (at low temperature and neutral pH) and tethering reaction. A multi-technique approach was implemented to characterize the hybrid organic-inorganic catalysts involving TGA, N-2 physisorption analysis, FTIR spectroscopy, and ss MAS NMR (H-1, C-13, Si-29) spectroscopy. Specifically, the acidity of the organosiliceous hybrid materials was studied through the adsorption of probe molecules (i.e. CO at 77 K and NH3 and TMPO at room temperature) and a combination of FTIR and ss MAS NMR spectroscopy. The catalytic activity of the two hybrids was tested in the acetal formation reaction between benzaldehyde and ethylene glycol. Preliminary results indicated superior performances for the fluoro-aryl-sulfonic acid, compared to the non-fluorinated sample. The findings hereby reported open new avenues for the design of heterogeneous sulfonic acids with superior reactivity in acid-catalyzed reactions. Moreover, through the implementation of spectroscopic studies, using probe molecules, it was possible to investigate in detail the acidic properties of hybrid organosiliceous materials. | es_ES |
dc.description.sponsorship | AE acknowledge "la Caixa" foundation for the PhD scholarship. The authors are grateful for financial support from the European Union by the MULTY2HYCAT EU-Horizon 2020 funded project under grant agreement no. 720783. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Catalysis Science & Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.title | Acid properties of organosiliceous hybrid materials based on pendant (fluoro)aryl-sulfonic groups through a spectroscopic study with probe molecules | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c9cy01609k | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/720783/EU/MULTI-site organic-inorganic HYbrid CATalysts for MULTI-step chemical processes/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Erigoni, A.; Paul, G.; Meazza, M.; Hernández Soto, MC.; Miletto, I.; Rios, R.; Segarra-Almela, MDLC.... (2019). Acid properties of organosiliceous hybrid materials based on pendant (fluoro)aryl-sulfonic groups through a spectroscopic study with probe molecules. Catalysis Science & Technology. 9(22):6308-6317. https://doi.org/10.1039/c9cy01609k | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c9cy01609k | es_ES |
dc.description.upvformatpinicio | 6308 | es_ES |
dc.description.upvformatpfin | 6317 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 22 | es_ES |
dc.relation.pasarela | S\407659 | es_ES |
dc.contributor.funder | Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona | es_ES |
dc.description.references | Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z | es_ES |
dc.description.references | Díaz, U., Brunel, D., & Corma, A. (2013). Catalysis using multifunctional organosiliceous hybrid materials. Chemical Society Reviews, 42(9), 4083. doi:10.1039/c2cs35385g | es_ES |
dc.description.references | Sanchez, C., Julián, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15(35-36), 3559. doi:10.1039/b509097k | es_ES |
dc.description.references | Kapoor, M. P., Sinha, A. K., Seelan, S., Inagaki, S., Tsubota, S., Yoshida, H., & Haruta, M. (2002). Hydrophobicity induced vapor-phase oxidation of propene over gold supported on titanium incorporated hybrid mesoporous silsesquioxane. Chemical Communications, (23), 2902-2903. doi:10.1039/b209392h | es_ES |
dc.description.references | Collins, D. J., & Zhou, H.-C. (2007). Hydrogen storage in metal–organic frameworks. Journal of Materials Chemistry, 17(30), 3154. doi:10.1039/b702858j | es_ES |
dc.description.references | Dag, Ö., Yoshina-Ishii, C., Asefa, T., MacLachlan, M. J., Grondey, H., Coombs, N., & Ozin, G. A. (2001). Oriented Periodic Mesoporous Organosilica (PMO) Film with Organic Functionality Inside the Channel Walls. Advanced Functional Materials, 11(3), 213-217. doi:10.1002/1616-3028(200106)11:3<213::aid-adfm213>3.0.co;2-c | es_ES |
dc.description.references | Shea, K. J., & Loy, D. A. (2001). Bridged Polysilsesquioxanes. Molecular-Engineered Hybrid Organic−Inorganic Materials. Chemistry of Materials, 13(10), 3306-3319. doi:10.1021/cm011074s | es_ES |
dc.description.references | Harbuzaru, B. V., Corma, A., Rey, F., Atienzar, P., Jordá, J. L., García, H., … Rocha, J. (2008). Metal–Organic Nanoporous Structures with Anisotropic Photoluminescence and Magnetic Properties and Their Use as Sensors. Angewandte Chemie International Edition, 47(6), 1080-1083. doi:10.1002/anie.200704702 | es_ES |
dc.description.references | Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(20), 3216-3251. doi:10.1002/anie.200503075 | es_ES |
dc.description.references | Stein, A., Melde, B. J., & Schroden, R. C. (2000). Hybrid Inorganic-Organic Mesoporous Silicates—Nanoscopic Reactors Coming of Age. Advanced Materials, 12(19), 1403-1419. doi:10.1002/1521-4095(200010)12:19<1403::aid-adma1403>3.0.co;2-x | es_ES |
dc.description.references | Reale, E., Leyva, A., Corma, A., Martínez, C., García, H., & Rey, F. (2005). A fluoride-catalyzed sol–gel route to catalytically active non-ordered mesoporous silica materials in the absence of surfactants. Journal of Materials Chemistry, 15(17), 1742. doi:10.1039/b415066j | es_ES |
dc.description.references | Lim, M. H., Blanford, C. F., & Stein, A. (1997). Synthesis and Characterization of a Reactive Vinyl-Functionalized MCM-41: Probing the Internal Pore Structure by a Bromination Reaction. Journal of the American Chemical Society, 119(17), 4090-4091. doi:10.1021/ja9638824 | es_ES |
dc.description.references | Winter, R., Hua, D.-W., Thiyagarajan, P., & Jonas, J. (1989). A SANS study of the effect of catalyst on the growth process of silica gels. Journal of Non-Crystalline Solids, 108(2), 137-142. doi:10.1016/0022-3093(89)90575-9 | es_ES |
dc.description.references | González-Arellano, C., Corma, A., Iglesias, M., & Sánchez, F. (2004). Improved Palladium and Nickel Catalysts Heterogenised on Oxidic Supports (Silica, MCM-41, ITQ-2, ITQ-6). Advanced Synthesis & Catalysis, 346(11), 1316-1328. doi:10.1002/adsc.200404029 | es_ES |
dc.description.references | Doustkhah, E., Lin, J., Rostamnia, S., Len, C., Luque, R., Luo, X., … Ide, Y. (2018). Development of Sulfonic-Acid-Functionalized Mesoporous Materials: Synthesis and Catalytic Applications. Chemistry - A European Journal, 25(7), 1614-1635. doi:10.1002/chem.201802183 | es_ES |
dc.description.references | MBARAKA, I., & SHANKS, B. (2005). Design of multifunctionalized mesoporous silicas for esterification of fatty acid. Journal of Catalysis, 229(2), 365-373. doi:10.1016/j.jcat.2004.11.008 | es_ES |
dc.description.references | Zhou, W.-J., Fang, L., Fan, Z., Albela, B., Bonneviot, L., De Campo, F., … Clacens, J.-M. (2014). Tunable Catalysts for Solvent-Free Biphasic Systems: Pickering Interfacial Catalysts over Amphiphilic Silica Nanoparticles. Journal of the American Chemical Society, 136(13), 4869-4872. doi:10.1021/ja501019n | es_ES |
dc.description.references | Gianotti, E., Diaz, U., Velty, A., & Corma, A. (2013). Designing bifunctional acid–base mesoporous hybrid catalysts for cascade reactions. Catalysis Science & Technology, 3(10), 2677. doi:10.1039/c3cy00269a | es_ES |
dc.description.references | Posternak, A. G., Garlyauskayte, R. Y., & Yagupolskii, L. M. (2009). A novel Brønsted acid catalyst for Friedel–Crafts acylation. Tetrahedron Letters, 50(4), 446-447. doi:10.1016/j.tetlet.2008.11.038 | es_ES |
dc.description.references | Olah, G. A., Arvanaghi, M., & Krishnamurthy, V. V. (1983). Heterogeneous catalysis by solid superacids. 17. Polymeric perfluorinated resin sulfonic acid (Nafion-H) catalyzed Fries rearrangement of aryl esters. The Journal of Organic Chemistry, 48(19), 3359-3360. doi:10.1021/jo00167a052 | es_ES |
dc.description.references | Olah, G. A., Laali, K., & Mehrotra, A. K. (1983). Catalysis by solid superacids. 18. Nafion-H perfluorinated resin sulfonic acid promoted deacetylation and decarboxylation of aromatics. The Journal of Organic Chemistry, 48(19), 3360-3362. doi:10.1021/jo00167a053 | es_ES |
dc.description.references | Armor, J. N. (2001). New catalytic technology commercialized in the USA during the 1990s. Applied Catalysis A: General, 222(1-2), 407-426. doi:10.1016/s0926-860x(01)00846-8 | es_ES |
dc.description.references | Miletto, I., Paul, G., Chapman, S., Gatti, G., Marchese, L., Raja, R., & Gianotti, E. (2017). Mesoporous Silica Scaffolds as Precursor to Drive the Formation of Hierarchical SAPO-34 with Tunable Acid Properties. Chemistry - A European Journal, 23(41), 9952-9961. doi:10.1002/chem.201701978 | es_ES |
dc.description.references | Erigoni, A., Newland, S. H., Paul, G., Marchese, L., Raja, R., & Gianotti, E. (2016). Creating Accessible Active Sites in Hierarchical MFI Zeolites for Low-Temperature Acid Catalysis. ChemCatChem, 8(19), 3161-3169. doi:10.1002/cctc.201600729 | es_ES |
dc.description.references | Bordiga, S., Ugliengo, P., Damin, A., Lamberti, C., Spoto, G., Zecchina, A., … Rivetti, F. (2001). Topics in Catalysis, 15(1), 43-52. doi:10.1023/a:1009019829376 | es_ES |
dc.description.references | Paul, G., Bisio, C., Braschi, I., Cossi, M., Gatti, G., Gianotti, E., & Marchese, L. (2018). Combined solid-state NMR, FT-IR and computational studies on layered and porous materials. Chemical Society Reviews, 47(15), 5684-5739. doi:10.1039/c7cs00358g | es_ES |
dc.description.references | G. Socrates , Infrared and Raman characteristic group frequencies: tables and charts , Wiley , Chichester , repr. as paperback., 3rd edn, 2010 | es_ES |
dc.description.references | Holm, M. S., Svelle, S., Joensen, F., Beato, P., Christensen, C. H., Bordiga, S., & Bjørgen, M. (2009). Assessing the acid properties of desilicated ZSM-5 by FTIR using CO and 2,4,6-trimethylpyridine (collidine) as molecular probes. Applied Catalysis A: General, 356(1), 23-30. doi:10.1016/j.apcata.2008.11.033 | es_ES |
dc.description.references | Gianotti, E., Dellarocca, V., Marchese, L., Martra, G., Coluccia, S., & Maschmeyer, T. (2002). NH3adsorption on MCM-41 and Ti-grafted MCM-41. FTIR, DR UV–Vis–NIR and photoluminescence studies. Phys. Chem. Chem. Phys., 4(24), 6109-6115. doi:10.1039/b207231a | es_ES |
dc.description.references | Zecchina, A., Marchese, L., Bordiga, S., Pazè, C., & Gianotti, E. (1997). Vibrational Spectroscopy of NH4+Ions in Zeolitic Materials: An IR Study. The Journal of Physical Chemistry B, 101(48), 10128-10135. doi:10.1021/jp9717554 | es_ES |
dc.description.references | Paul, G., Musso, G. E., Bottinelli, E., Cossi, M., Marchese, L., & Berlier, G. (2017). Investigating the Interaction of Water Vapour with Aminopropyl Groups on the Surface of Mesoporous Silica Nanoparticles. ChemPhysChem, 18(7), 839-849. doi:10.1002/cphc.201601135 | es_ES |
dc.description.references | Sharifi, M., Wark, M., Freude, D., & Haase, J. (2012). Highly proton conducting sulfonic acid functionalized mesoporous materials studied by impedance spectroscopy, MAS NMR spectroscopy and MAS PFG NMR diffusometry. Microporous and Mesoporous Materials, 156, 80-89. doi:10.1016/j.micromeso.2012.02.019 | es_ES |
dc.description.references | Trickett, C. A., Osborn Popp, T. M., Su, J., Yan, C., Weisberg, J., Huq, A., … Yaghi, O. M. (2018). Identification of the strong Brønsted acid site in a metal–organic framework solid acid catalyst. Nature Chemistry, 11(2), 170-176. doi:10.1038/s41557-018-0171-z | es_ES |
dc.description.references | Zheng, A., Li, S., Liu, S.-B., & Deng, F. (2016). Acidic Properties and Structure–Activity Correlations of Solid Acid Catalysts Revealed by Solid-State NMR Spectroscopy. Accounts of Chemical Research, 49(4), 655-663. doi:10.1021/acs.accounts.6b00007 | es_ES |
dc.description.references | Zheng, A., Liu, S.-B., & Deng, F. (2013). Acidity characterization of heterogeneous catalysts by solid-state NMR spectroscopy using probe molecules. Solid State Nuclear Magnetic Resonance, 55-56, 12-27. doi:10.1016/j.ssnmr.2013.09.001 | es_ES |
dc.description.references | Liu, F., Yi, X., Chen, W., Liu, Z., Chen, W., Qi, C.-Z., … Zheng, A. (2019). Developing two-dimensional solid superacids with enhanced mass transport, extremely high acid strength and superior catalytic performance. Chemical Science, 10(23), 5875-5883. doi:10.1039/c9sc01988j | es_ES |
dc.description.references | Zheng, A., Liu, S.-B., & Deng, F. (2017). 31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts. Chemical Reviews, 117(19), 12475-12531. doi:10.1021/acs.chemrev.7b00289 | es_ES |
dc.description.references | P. G. Wuts and T. W.Greene , Greene's protective groups in organic synthesis , Wiley , 2006 | es_ES |
dc.description.references | Firouzabadi, H., Iranpoor, N., & Karimi, B. (1999). Zirconium Tetrachloride (ZrCl4) Catalyzed Highly Chemoselective and Efficient Acetalization of Carbonyl Compounds. Synlett, 1999(3), 321-323. doi:10.1055/s-1999-2605 | es_ES |