- -

Readily available Ti-beta as an efficient catalyst for greener and sustainable production of campholenic aldehyde

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Readily available Ti-beta as an efficient catalyst for greener and sustainable production of campholenic aldehyde

Mostrar el registro completo del ítem

Puche Panadero, M.; Velty, A. (2019). Readily available Ti-beta as an efficient catalyst for greener and sustainable production of campholenic aldehyde. Catalysis Science & Technology. 9(16):4293-4303. https://doi.org/10.1039/c9cy00957d

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/154803

Ficheros en el ítem

Metadatos del ítem

Título: Readily available Ti-beta as an efficient catalyst for greener and sustainable production of campholenic aldehyde
Autor: Puche Panadero, Marta Velty, Alexandra
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Different Ti-beta zeolite samples were prepared following a convenient and optimized post-synthetic route and starting from commercial Al-beta zeolite. Lewis acid sites have been successfully incorporated into vacant ...[+]
Palabras clave: Ti-beta zeolite , Ball-milling solid-state ion-exchange , Batch and fixed bed reactor , Isomerization of alpha-pinene oxide into campholenic aldehyde , Excellent results , Catalytic activity
Derechos de uso: Reserva de todos los derechos
Fuente:
Catalysis Science & Technology. (issn: 2044-4753 )
DOI: 10.1039/c9cy00957d
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c9cy00957d
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Agradecimientos:
The authors are grateful for financial support from the Spanish Government by MAT2017-82288-C2-1-P and Severo Ochoa Excellence Program SEV-2016-0683. The contribution of Mr. Pablo Ramos to the experimental work is also ...[+]
Tipo: Artículo

References

Stekrova, M., Kumar, N., Aho, A., Sinev, I., Grünert, W., Dahl, J., … Murzin, D. Y. (2014). Isomerization of α-pinene oxide using Fe-supported catalysts: Selective synthesis of campholenic aldehyde. Applied Catalysis A: General, 470, 162-176. doi:10.1016/j.apcata.2013.10.044

Kunkeler, P. J., van der Waal, J. C., Bremmer, J., Zuurdeeg, B. J., Downing, R. S., & van Bekkum, H. (1998). Catalysis Letters, 53(1/2), 135-138. doi:10.1023/a:1019049704709

Pitínová-Štekrová, M., Eliášová, P., Weissenberger, T., Shamzhy, M., Musilová, Z., & Čejka, J. (2018). Highly selective synthesis of campholenic aldehyde over Ti-MWW catalysts by α-pinene oxide isomerization. Catalysis Science & Technology, 8(18), 4690-4701. doi:10.1039/c8cy01231h [+]
Stekrova, M., Kumar, N., Aho, A., Sinev, I., Grünert, W., Dahl, J., … Murzin, D. Y. (2014). Isomerization of α-pinene oxide using Fe-supported catalysts: Selective synthesis of campholenic aldehyde. Applied Catalysis A: General, 470, 162-176. doi:10.1016/j.apcata.2013.10.044

Kunkeler, P. J., van der Waal, J. C., Bremmer, J., Zuurdeeg, B. J., Downing, R. S., & van Bekkum, H. (1998). Catalysis Letters, 53(1/2), 135-138. doi:10.1023/a:1019049704709

Pitínová-Štekrová, M., Eliášová, P., Weissenberger, T., Shamzhy, M., Musilová, Z., & Čejka, J. (2018). Highly selective synthesis of campholenic aldehyde over Ti-MWW catalysts by α-pinene oxide isomerization. Catalysis Science & Technology, 8(18), 4690-4701. doi:10.1039/c8cy01231h

Arbusow, B. (1935). Studium der Isomerisation von Terpen-oxyden, I. Mitteil.: Isomerisation des α-Pinen-oxydes bei der Reaktion von Reformatsky. Berichte der deutschen chemischen Gesellschaft (A and B Series), 68(8), 1430-1435. doi:10.1002/cber.19350680803

Arata, K., & Tanabe, K. (1979). ISOMERIZATION OF α-PlNENE OXIDE OVER SOLID ACIDS AND BASES. Chemistry Letters, 8(8), 1017-1018. doi:10.1246/cl.1979.1017

Kaminska, J., Schwegler, M. A., Hoefnagel, A. J., & van Bekkum, H. (1992). The isomerization of α-pinene oxide with Brønsted and Lewis acids. Recueil des Travaux Chimiques des Pays-Bas, 111(10), 432-437. doi:10.1002/recl.19921111004

Huybrechts, D. R. C., Bruycker, L. D., & Jacobs, P. A. (1990). Oxyfunctionalization of alkanes with hydrogen peroxide on titanium silicalite. Nature, 345(6272), 240-242. doi:10.1038/345240a0

C. Ferrini and H. W.Kouwenhoven , New Developments in Selective Oxidation , ed. G. Centi and F. Trifiro , Elsevier , Amsterdam , 1990 , p. 53

Camblor, M. A., Costantini, M., Corma, A., Gilbert, L., Esteve, P., Martínez, A., & Valencia, S. (1996). Synthesis and catalytic activity of aluminium-free zeolite Ti-β oxidation catalysts. Chem. Commun., (11), 1339-1340. doi:10.1039/cc9960001339

Blasco, T., Camblor, M. A., Corma, A., Esteve, P., Martínez, A., Prieto, C., & Valencia, S. (1996). Unseeded synthesis of Al-free Ti-β zeolite in fluoride medium: a hydrophobic selective oxidation catalyst. Chem. Commun., (20), 2367-2368. doi:10.1039/cc9960002367

Li, P., Liu, G., Wu, H., Liu, Y., Jiang, J., & Wu, P. (2011). Postsynthesis and Selective Oxidation Properties of Nanosized Sn-Beta Zeolite. The Journal of Physical Chemistry C, 115(9), 3663-3670. doi:10.1021/jp1076966

Dijkmans, J., Gabriëls, D., Dusselier, M., de Clippel, F., Vanelderen, P., Houthoofd, K., … Sels, B. F. (2013). Productive sugar isomerization with highly active Sn in dealuminated β zeolites. Green Chemistry, 15(10), 2777. doi:10.1039/c3gc41239c

Hammond, C., Conrad, S., & Hermans, I. (2012). Simple and Scalable Preparation of Highly Active Lewis Acidic Sn-β. Angewandte Chemie International Edition, 51(47), 11736-11739. doi:10.1002/anie.201206193

Wolf, P., Hammond, C., Conrad, S., & Hermans, I. (2014). Post-synthetic preparation of Sn-, Ti- and Zr-beta: a facile route to water tolerant, highly active Lewis acidic zeolites. Dalton Transactions, 43(11), 4514. doi:10.1039/c3dt52972j

Tolborg, S., Sádaba, I., Osmundsen, C. M., Fristrup, P., Holm, M. S., & Taarning, E. (2015). Tin-containing Silicates: Alkali Salts Improve Methyl Lactate Yield from Sugars. ChemSusChem, 8(4), 613-617. doi:10.1002/cssc.201403057

Camblor, M. A., Corma, A., & Pérez-Pariente, J. (1993). Synthesis of titanoaluminosilicates isomorphous to zeolite Beta, active as oxidation catalysts. Zeolites, 13(2), 82-87. doi:10.1016/0144-2449(93)90064-a

Garcia Vargas, N., Stevenson, S., & Shantz, D. F. (2012). Synthesis and characterization of tin(IV) MFI: Sodium inhibits the synthesis of phase pure materials. Microporous and Mesoporous Materials, 152, 37-49. doi:10.1016/j.micromeso.2011.11.036

Tatsumi, T., Koyano, K. A., & Shimizu, Y. (2000). Effect of potassium on the catalytic activity of TS-1. Applied Catalysis A: General, 200(1-2), 125-134. doi:10.1016/s0926-860x(00)00630-x

Khouw, C. B., & Davis, M. E. (1995). Catalytic Activity of Titanium Silicates Synthesized in the Presence of Alkali-Metal and Alkaline-Earth Ions. Journal of Catalysis, 151(1), 77-86. doi:10.1006/jcat.1995.1010

Kuwahara, Y., Nishizawa, K., Nakajima, T., Kamegawa, T., Mori, K., & Yamashita, H. (2011). Enhanced Catalytic Activity on Titanosilicate Molecular Sieves Controlled by Cation−π Interactions. Journal of the American Chemical Society, 133(32), 12462-12465. doi:10.1021/ja205699d

Taarning, E., Saravanamurugan, S., Spangsberg Holm, M., Xiong, J., West, R. M., & Christensen, C. H. (2009). Zeolite-Catalyzed Isomerization of Triose Sugars. ChemSusChem, 2(7), 625-627. doi:10.1002/cssc.200900099

Bermejo-Deval, R., Orazov, M., Gounder, R., Hwang, S.-J., & Davis, M. E. (2014). Active Sites in Sn-Beta for Glucose Isomerization to Fructose and Epimerization to Mannose. ACS Catalysis, 4(7), 2288-2297. doi:10.1021/cs500466j

Blasco, T., Camblor, M. A., Corma, A., Esteve, P., Guil, J. M., Martínez, A., … Valencia, S. (1998). Direct Synthesis and Characterization of Hydrophobic Aluminum-Free Ti−Beta Zeolite. The Journal of Physical Chemistry B, 102(1), 75-88. doi:10.1021/jp973288w

R. K. Iler , The Chemistry of Silica , Wiley , New York , 1979

Cordon, M. J., Harris, J. W., Vega-Vila, J. C., Bates, J. S., Kaur, S., Gupta, M., … Gounder, R. (2018). Dominant Role of Entropy in Stabilizing Sugar Isomerization Transition States within Hydrophobic Zeolite Pores. Journal of the American Chemical Society, 140(43), 14244-14266. doi:10.1021/jacs.8b08336

BORONAT, M., CONCEPCION, P., CORMA, A., RENZ, M., & VALENCIA, S. (2005). Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies. Journal of Catalysis, 234(1), 111-118. doi:10.1016/j.jcat.2005.05.023

Gleeson, D., Sankar, G., Richard A. Catlow, C., Meurig Thomas, J., Spanó, G., Bordiga, S., … Lamberti, C. (2000). The architecture of catalytically active centers in titanosilicate (TS-1) and related selective-oxidation catalysts. Physical Chemistry Chemical Physics, 2(20), 4812-4817. doi:10.1039/b005780k

Otomo, R., Kosugi, R., Kamiya, Y., Tatsumi, T., & Yokoi, T. (2016). Modification of Sn-Beta zeolite: characterization of acidic/basic properties and catalytic performance in Baeyer–Villiger oxidation. Catalysis Science & Technology, 6(8), 2787-2795. doi:10.1039/c6cy00532b

Imamura, S., Nakai, T., Kanai, H., & Ito, T. (1995). Effect of tetrahedral Ti in titania–silica mixed oxides on epoxidation activity and Lewis acidity. J. Chem. Soc., Faraday Trans., 91(8), 1261-1266. doi:10.1039/ft9959101261

Yang, G., & Zhou, L. (2017). Active Sites of M(IV)-incorporated Zeolites (M = Sn, Ti, Ge, Zr). Scientific Reports, 7(1). doi:10.1038/s41598-017-16409-y

Alaerts, L., Séguin, E., Poelman, H., Thibault-Starzyk, F., Jacobs, P. A., & De Vos, D. E. (2006). Probing the Lewis Acidity and Catalytic Activity of the Metal–Organic Framework [Cu3(btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chemistry - A European Journal, 12(28), 7353-7363. doi:10.1002/chem.200600220

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem