- -

Readily available Ti-beta as an efficient catalyst for greener and sustainable production of campholenic aldehyde

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Readily available Ti-beta as an efficient catalyst for greener and sustainable production of campholenic aldehyde

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Puche Panadero, Marta es_ES
dc.contributor.author Velty, Alexandra es_ES
dc.date.accessioned 2020-11-11T04:32:17Z
dc.date.available 2020-11-11T04:32:17Z
dc.date.issued 2019-08-21 es_ES
dc.identifier.issn 2044-4753 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154803
dc.description.abstract [EN] Different Ti-beta zeolite samples were prepared following a convenient and optimized post-synthetic route and starting from commercial Al-beta zeolite. Lewis acid sites have been successfully incorporated into vacant tetrahedral (T)-sites of a dealuminated beta-framework by ball-milling solid-state ion-exchange. A tribology-ball milling process was used in order to increase the interaction between dealuminated-beta zeolite and the Ti-precursor. Thermal treatments with water and aqueous solution of NaNO or Li NO allowed optimization of the catalytic properties of the Ti-Lewis active sites which exhibited excellent catalytic activity and stability for the isomerization of ¿-pinene oxide into campholenic aldehyde in both batch and fixed bed reactor systems. Additionally, the catalytic performance of the post-synthesised Ti-beta zeolite was compared to a Ti-beta zeolite prepared in fluoride media. From different points of view such as preparation of readily, highly active, selective and stable catalysts, throughput, sustainability and cost, herein we report the selective solid catalysed ¿-PO isomerization with excellent results, 88% selectivity and yield, a CA production of 225 g g h and new opportunities. es_ES
dc.description.sponsorship The authors are grateful for financial support from the Spanish Government by MAT2017-82288-C2-1-P and Severo Ochoa Excellence Program SEV-2016-0683. The contribution of Mr. Pablo Ramos to the experimental work is also gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Catalysis Science & Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ti-beta zeolite es_ES
dc.subject Ball-milling solid-state ion-exchange es_ES
dc.subject Batch and fixed bed reactor es_ES
dc.subject Isomerization of alpha-pinene oxide into campholenic aldehyde es_ES
dc.subject Excellent results es_ES
dc.subject Catalytic activity es_ES
dc.title Readily available Ti-beta as an efficient catalyst for greener and sustainable production of campholenic aldehyde es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c9cy00957d es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Puche Panadero, M.; Velty, A. (2019). Readily available Ti-beta as an efficient catalyst for greener and sustainable production of campholenic aldehyde. Catalysis Science & Technology. 9(16):4293-4303. https://doi.org/10.1039/c9cy00957d es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c9cy00957d es_ES
dc.description.upvformatpinicio 4293 es_ES
dc.description.upvformatpfin 4303 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 16 es_ES
dc.relation.pasarela S\410676 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Stekrova, M., Kumar, N., Aho, A., Sinev, I., Grünert, W., Dahl, J., … Murzin, D. Y. (2014). Isomerization of α-pinene oxide using Fe-supported catalysts: Selective synthesis of campholenic aldehyde. Applied Catalysis A: General, 470, 162-176. doi:10.1016/j.apcata.2013.10.044 es_ES
dc.description.references Kunkeler, P. J., van der Waal, J. C., Bremmer, J., Zuurdeeg, B. J., Downing, R. S., & van Bekkum, H. (1998). Catalysis Letters, 53(1/2), 135-138. doi:10.1023/a:1019049704709 es_ES
dc.description.references Pitínová-Štekrová, M., Eliášová, P., Weissenberger, T., Shamzhy, M., Musilová, Z., & Čejka, J. (2018). Highly selective synthesis of campholenic aldehyde over Ti-MWW catalysts by α-pinene oxide isomerization. Catalysis Science & Technology, 8(18), 4690-4701. doi:10.1039/c8cy01231h es_ES
dc.description.references Arbusow, B. (1935). Studium der Isomerisation von Terpen-oxyden, I. Mitteil.: Isomerisation des α-Pinen-oxydes bei der Reaktion von Reformatsky. Berichte der deutschen chemischen Gesellschaft (A and B Series), 68(8), 1430-1435. doi:10.1002/cber.19350680803 es_ES
dc.description.references Arata, K., & Tanabe, K. (1979). ISOMERIZATION OF α-PlNENE OXIDE OVER SOLID ACIDS AND BASES. Chemistry Letters, 8(8), 1017-1018. doi:10.1246/cl.1979.1017 es_ES
dc.description.references Kaminska, J., Schwegler, M. A., Hoefnagel, A. J., & van Bekkum, H. (1992). The isomerization of α-pinene oxide with Brønsted and Lewis acids. Recueil des Travaux Chimiques des Pays-Bas, 111(10), 432-437. doi:10.1002/recl.19921111004 es_ES
dc.description.references Huybrechts, D. R. C., Bruycker, L. D., & Jacobs, P. A. (1990). Oxyfunctionalization of alkanes with hydrogen peroxide on titanium silicalite. Nature, 345(6272), 240-242. doi:10.1038/345240a0 es_ES
dc.description.references C. Ferrini and H. W.Kouwenhoven , New Developments in Selective Oxidation , ed. G. Centi and F. Trifiro , Elsevier , Amsterdam , 1990 , p. 53 es_ES
dc.description.references Camblor, M. A., Costantini, M., Corma, A., Gilbert, L., Esteve, P., Martínez, A., & Valencia, S. (1996). Synthesis and catalytic activity of aluminium-free zeolite Ti-β oxidation catalysts. Chem. Commun., (11), 1339-1340. doi:10.1039/cc9960001339 es_ES
dc.description.references Blasco, T., Camblor, M. A., Corma, A., Esteve, P., Martínez, A., Prieto, C., & Valencia, S. (1996). Unseeded synthesis of Al-free Ti-β zeolite in fluoride medium: a hydrophobic selective oxidation catalyst. Chem. Commun., (20), 2367-2368. doi:10.1039/cc9960002367 es_ES
dc.description.references Li, P., Liu, G., Wu, H., Liu, Y., Jiang, J., & Wu, P. (2011). Postsynthesis and Selective Oxidation Properties of Nanosized Sn-Beta Zeolite. The Journal of Physical Chemistry C, 115(9), 3663-3670. doi:10.1021/jp1076966 es_ES
dc.description.references Dijkmans, J., Gabriëls, D., Dusselier, M., de Clippel, F., Vanelderen, P., Houthoofd, K., … Sels, B. F. (2013). Productive sugar isomerization with highly active Sn in dealuminated β zeolites. Green Chemistry, 15(10), 2777. doi:10.1039/c3gc41239c es_ES
dc.description.references Hammond, C., Conrad, S., & Hermans, I. (2012). Simple and Scalable Preparation of Highly Active Lewis Acidic Sn-β. Angewandte Chemie International Edition, 51(47), 11736-11739. doi:10.1002/anie.201206193 es_ES
dc.description.references Wolf, P., Hammond, C., Conrad, S., & Hermans, I. (2014). Post-synthetic preparation of Sn-, Ti- and Zr-beta: a facile route to water tolerant, highly active Lewis acidic zeolites. Dalton Transactions, 43(11), 4514. doi:10.1039/c3dt52972j es_ES
dc.description.references Tolborg, S., Sádaba, I., Osmundsen, C. M., Fristrup, P., Holm, M. S., & Taarning, E. (2015). Tin-containing Silicates: Alkali Salts Improve Methyl Lactate Yield from Sugars. ChemSusChem, 8(4), 613-617. doi:10.1002/cssc.201403057 es_ES
dc.description.references Camblor, M. A., Corma, A., & Pérez-Pariente, J. (1993). Synthesis of titanoaluminosilicates isomorphous to zeolite Beta, active as oxidation catalysts. Zeolites, 13(2), 82-87. doi:10.1016/0144-2449(93)90064-a es_ES
dc.description.references Garcia Vargas, N., Stevenson, S., & Shantz, D. F. (2012). Synthesis and characterization of tin(IV) MFI: Sodium inhibits the synthesis of phase pure materials. Microporous and Mesoporous Materials, 152, 37-49. doi:10.1016/j.micromeso.2011.11.036 es_ES
dc.description.references Tatsumi, T., Koyano, K. A., & Shimizu, Y. (2000). Effect of potassium on the catalytic activity of TS-1. Applied Catalysis A: General, 200(1-2), 125-134. doi:10.1016/s0926-860x(00)00630-x es_ES
dc.description.references Khouw, C. B., & Davis, M. E. (1995). Catalytic Activity of Titanium Silicates Synthesized in the Presence of Alkali-Metal and Alkaline-Earth Ions. Journal of Catalysis, 151(1), 77-86. doi:10.1006/jcat.1995.1010 es_ES
dc.description.references Kuwahara, Y., Nishizawa, K., Nakajima, T., Kamegawa, T., Mori, K., & Yamashita, H. (2011). Enhanced Catalytic Activity on Titanosilicate Molecular Sieves Controlled by Cation−π Interactions. Journal of the American Chemical Society, 133(32), 12462-12465. doi:10.1021/ja205699d es_ES
dc.description.references Taarning, E., Saravanamurugan, S., Spangsberg Holm, M., Xiong, J., West, R. M., & Christensen, C. H. (2009). Zeolite-Catalyzed Isomerization of Triose Sugars. ChemSusChem, 2(7), 625-627. doi:10.1002/cssc.200900099 es_ES
dc.description.references Bermejo-Deval, R., Orazov, M., Gounder, R., Hwang, S.-J., & Davis, M. E. (2014). Active Sites in Sn-Beta for Glucose Isomerization to Fructose and Epimerization to Mannose. ACS Catalysis, 4(7), 2288-2297. doi:10.1021/cs500466j es_ES
dc.description.references Blasco, T., Camblor, M. A., Corma, A., Esteve, P., Guil, J. M., Martínez, A., … Valencia, S. (1998). Direct Synthesis and Characterization of Hydrophobic Aluminum-Free Ti−Beta Zeolite. The Journal of Physical Chemistry B, 102(1), 75-88. doi:10.1021/jp973288w es_ES
dc.description.references R. K. Iler , The Chemistry of Silica , Wiley , New York , 1979 es_ES
dc.description.references Cordon, M. J., Harris, J. W., Vega-Vila, J. C., Bates, J. S., Kaur, S., Gupta, M., … Gounder, R. (2018). Dominant Role of Entropy in Stabilizing Sugar Isomerization Transition States within Hydrophobic Zeolite Pores. Journal of the American Chemical Society, 140(43), 14244-14266. doi:10.1021/jacs.8b08336 es_ES
dc.description.references BORONAT, M., CONCEPCION, P., CORMA, A., RENZ, M., & VALENCIA, S. (2005). Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies. Journal of Catalysis, 234(1), 111-118. doi:10.1016/j.jcat.2005.05.023 es_ES
dc.description.references Gleeson, D., Sankar, G., Richard A. Catlow, C., Meurig Thomas, J., Spanó, G., Bordiga, S., … Lamberti, C. (2000). The architecture of catalytically active centers in titanosilicate (TS-1) and related selective-oxidation catalysts. Physical Chemistry Chemical Physics, 2(20), 4812-4817. doi:10.1039/b005780k es_ES
dc.description.references Otomo, R., Kosugi, R., Kamiya, Y., Tatsumi, T., & Yokoi, T. (2016). Modification of Sn-Beta zeolite: characterization of acidic/basic properties and catalytic performance in Baeyer–Villiger oxidation. Catalysis Science & Technology, 6(8), 2787-2795. doi:10.1039/c6cy00532b es_ES
dc.description.references Imamura, S., Nakai, T., Kanai, H., & Ito, T. (1995). Effect of tetrahedral Ti in titania–silica mixed oxides on epoxidation activity and Lewis acidity. J. Chem. Soc., Faraday Trans., 91(8), 1261-1266. doi:10.1039/ft9959101261 es_ES
dc.description.references Yang, G., & Zhou, L. (2017). Active Sites of M(IV)-incorporated Zeolites (M = Sn, Ti, Ge, Zr). Scientific Reports, 7(1). doi:10.1038/s41598-017-16409-y es_ES
dc.description.references Alaerts, L., Séguin, E., Poelman, H., Thibault-Starzyk, F., Jacobs, P. A., & De Vos, D. E. (2006). Probing the Lewis Acidity and Catalytic Activity of the Metal–Organic Framework [Cu3(btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chemistry - A European Journal, 12(28), 7353-7363. doi:10.1002/chem.200600220 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem