- -

De novo synthesis of mesoporous photoactive titanium(iv)-organic frameworks with MIL-100 topology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

De novo synthesis of mesoporous photoactive titanium(iv)-organic frameworks with MIL-100 topology

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Castells-Gil, Javier es_ES
dc.contributor.author Padial, Natalia M. es_ES
dc.contributor.author Almora-Barrios, Neyvis es_ES
dc.contributor.author da Silva, Ivan es_ES
dc.contributor.author Mateo-Mateo, Diego es_ES
dc.contributor.author Albero-Sancho, Josep es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.contributor.author Martí-Gastaldo, Carlos es_ES
dc.date.accessioned 2020-11-13T04:32:09Z
dc.date.available 2020-11-13T04:32:09Z
dc.date.issued 2019-04-21 es_ES
dc.identifier.issn 2041-6520 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154996
dc.description.abstract [EN] Most developments in the chemistry and applications of metal-organic frameworks (MOFs) have been made possible thanks to the value of reticular chemistry in guiding the unlimited combination of organic connectors and secondary building units (SBUs) into targeted architectures. However, the development of new titanium-frameworks still remains limited by the difficulties in controlling the formation of persistent Ti-SBUs with predetermined directionality amenable to the isoreticular approach. Here we report the synthesis of a mesoporous Ti-MOF displaying a MIL-100 topology. MIL-100(Ti) combines excellent chemical stability and mesoporosity, intrinsic to this archetypical family of porous materials, with photoactive Ti-3((3)-O) metal-oxo clusters. By using high-throughput synthetic methodologies, we have confirmed that the formation of this SBU is thermodynamically favored as it is not strictly dependent on the metal precursor of choice and can be regarded as an adequate building block to control the design of new Ti-MOF architectures. We are confident that the addition of a mesoporous solid to the small number of crystalline, porous titanium-frameworks available will be a valuable asset to accelerate the development of new porous photocatalysts without the pore size limitations currently imposed by the microporous materials available. es_ES
dc.description.sponsorship This work was supported by the EU (ERC Stg Chem-fs-MOF 714122) and Spanish MINECO (MDM-2015-0538 & CTQ2017-83486-P). C. M.-G. and J. C.-G. thank the Spanish MINECO for a Ramon y Cajal Fellowship (RYC-2012-10894) and FPI Scholarship (CTQ2014-59209-P). N. M. P. thanks the European Union for a Marie Skodowska-Curie Global Fellowship (H2020-MSCA-IF-2016-GF-749359-EnanSET). We thank the ISIS Facility for the access to synchrotron radiation, BSC-RES and Prof. Enrique Orti for computational resources and Belen Lerma-Berlanga for technical help. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation ERC/ERC Stg Chem-fs-MOF 714122 es_ES
dc.relation.ispartof Chemical Science es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title De novo synthesis of mesoporous photoactive titanium(iv)-organic frameworks with MIL-100 topology es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c8sc05218b es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/749359/EU/Homogeneous and heterogeneous enantioselective Single Electron Transfer (SET) catalysis in cross-coupling reactions/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-83486-P/ES/REDES METAL-ORGANICAS DE INSPIRACION BIOLOGICA: COMPLEJIDAD QUIMICA EN ENTORNOS DE PORO VERSATILES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2014-59209-P/ES/OLIMEROS DE COORDINACION MAGNETICOS SENSIBLES A ESTIMULOS QUIMICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/714122/Chemical Engineering of Functional Stable Metal-Organic Frameworks: Porous Crystals and Thin Film Devices/chem-fs-MOF/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MDM-2015-0538/ES/INSTITUTO DE CIENCIA MOLECULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2012-10894/ES/RYC-2012-10894/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Castells-Gil, J.; Padial, NM.; Almora-Barrios, N.; Da Silva, I.; Mateo-Mateo, D.; Albero-Sancho, J.; García Gómez, H.... (2019). De novo synthesis of mesoporous photoactive titanium(iv)-organic frameworks with MIL-100 topology. Chemical Science. 10(15):4313-4321. https://doi.org/10.1039/c8sc05218b es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c8sc05218b es_ES
dc.description.upvformatpinicio 4313 es_ES
dc.description.upvformatpfin 4321 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 15 es_ES
dc.identifier.pmid 31057758 es_ES
dc.identifier.pmcid PMC6472189 es_ES
dc.relation.pasarela S\407058 es_ES
dc.contributor.funder European Research Council es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Commission
dc.description.references Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 1230444. doi:10.1126/science.1230444 es_ES
dc.description.references Jagadeesh, R. V., Murugesan, K., Alshammari, A. S., Neumann, H., Pohl, M.-M., Radnik, J., & Beller, M. (2017). MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science, 358(6361), 326-332. doi:10.1126/science.aan6245 es_ES
dc.description.references Cadiau, A., Belmabkhout, Y., Adil, K., Bhatt, P. M., Pillai, R. S., Shkurenko, A., … Eddaoudi, M. (2017). Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration. Science, 356(6339), 731-735. doi:10.1126/science.aam8310 es_ES
dc.description.references Kim, H., Yang, S., Rao, S. R., Narayanan, S., Kapustin, E. A., Furukawa, H., … Wang, E. N. (2017). Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science, 356(6336), 430-434. doi:10.1126/science.aam8743 es_ES
dc.description.references Sheberla, D., Bachman, J. C., Elias, J. S., Sun, C.-J., Shao-Horn, Y., & Dincă, M. (2016). Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature Materials, 16(2), 220-224. doi:10.1038/nmat4766 es_ES
dc.description.references Mondloch, J. E., Katz, M. J., Isley III, W. C., Ghosh, P., Liao, P., Bury, W., … Farha, O. K. (2015). Destruction of chemical warfare agents using metal–organic frameworks. Nature Materials, 14(5), 512-516. doi:10.1038/nmat4238 es_ES
dc.description.references Howarth, A. J., Liu, Y., Li, P., Li, Z., Wang, T. C., Hupp, J. T., & Farha, O. K. (2016). Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials, 1(3). doi:10.1038/natrevmats.2015.18 es_ES
dc.description.references Colombo, V., Galli, S., Choi, H. J., Han, G. D., Maspero, A., Palmisano, G., … Long, J. R. (2011). High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites. Chemical Science, 2(7), 1311. doi:10.1039/c1sc00136a es_ES
dc.description.references Assi, H., Mouchaham, G., Steunou, N., Devic, T., & Serre, C. (2017). Titanium coordination compounds: from discrete metal complexes to metal–organic frameworks. Chemical Society Reviews, 46(11), 3431-3452. doi:10.1039/c7cs00001d es_ES
dc.description.references Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953 es_ES
dc.description.references Bai, Y., Dou, Y., Xie, L.-H., Rutledge, W., Li, J.-R., & Zhou, H.-C. (2016). Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chemical Society Reviews, 45(8), 2327-2367. doi:10.1039/c5cs00837a es_ES
dc.description.references Devic, T., & Serre, C. (2014). High valence 3p and transition metal based MOFs. Chem. Soc. Rev., 43(16), 6097-6115. doi:10.1039/c4cs00081a es_ES
dc.description.references Kim, M., & Cohen, S. M. (2012). Discovery, development, and functionalization of Zr(iv)-based metal–organic frameworks. CrystEngComm, 14(12), 4096-4104. doi:10.1039/c2ce06491j es_ES
dc.description.references Wang, S., Kitao, T., Guillou, N., Wahiduzzaman, M., Martineau-Corcos, C., Nouar, F., … Serre, C. (2018). A phase transformable ultrastable titanium-carboxylate framework for photoconduction. Nature Communications, 9(1). doi:10.1038/s41467-018-04034-w es_ES
dc.description.references Dan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., & Férey, G. (2009). A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate. Journal of the American Chemical Society, 131(31), 10857-10859. doi:10.1021/ja903726m es_ES
dc.description.references Yuan, S., Liu, T.-F., Feng, D., Tian, J., Wang, K., Qin, J., … Zhou, H.-C. (2015). A single crystalline porphyrinic titanium metal–organic framework. Chemical Science, 6(7), 3926-3930. doi:10.1039/c5sc00916b es_ES
dc.description.references Nguyen, H. L., Gándara, F., Furukawa, H., Doan, T. L. H., Cordova, K. E., & Yaghi, O. M. (2016). A Titanium–Organic Framework as an Exemplar of Combining the Chemistry of Metal– and Covalent–Organic Frameworks. Journal of the American Chemical Society, 138(13), 4330-4333. doi:10.1021/jacs.6b01233 es_ES
dc.description.references Wang, C., Liu, C., He, X., & Sun, Z.-M. (2017). A cluster-based mesoporous Ti-MOF with sodalite supercages. Chem. Commun., 53(85), 11670-11673. doi:10.1039/c7cc06652j es_ES
dc.description.references Yuan, S., Qin, J.-S., Xu, H.-Q., Su, J., Rossi, D., Chen, Y., … Zhou, H.-C. (2017). [Ti8Zr2O12(COO)16] Cluster: An Ideal Inorganic Building Unit for Photoactive Metal–Organic Frameworks. ACS Central Science, 4(1), 105-111. doi:10.1021/acscentsci.7b00497 es_ES
dc.description.references Castells-Gil, J., Padial, N. M., Almora-Barrios, N., Albero, J., Ruiz-Salvador, A. R., González-Platas, J., … Martí-Gastaldo, C. (2018). Chemical Engineering of Photoactivity in Heterometallic Titanium-Organic Frameworks by Metal Doping. Angewandte Chemie International Edition, 57(28), 8453-8457. doi:10.1002/anie.201802089 es_ES
dc.description.references Gao, J., Miao, J., Li, P.-Z., Teng, W. Y., Yang, L., Zhao, Y., … Zhang, Q. (2014). A p-type Ti(iv)-based metal–organic framework with visible-light photo-response. Chem. Commun., 50(29), 3786-3788. doi:10.1039/c3cc49440c es_ES
dc.description.references Nguyen, N. T. T., Furukawa, H., Gándara, F., Trickett, C. A., Jeong, H. M., Cordova, K. E., & Yaghi, O. M. (2015). Three-Dimensional Metal-Catecholate Frameworks and Their Ultrahigh Proton Conductivity. Journal of the American Chemical Society, 137(49), 15394-15397. doi:10.1021/jacs.5b10999 es_ES
dc.description.references Kim, M., Cahill, J. F., Fei, H., Prather, K. A., & Cohen, S. M. (2012). Postsynthetic Ligand and Cation Exchange in Robust Metal–Organic Frameworks. Journal of the American Chemical Society, 134(43), 18082-18088. doi:10.1021/ja3079219 es_ES
dc.description.references Zou, L., Feng, D., Liu, T.-F., Chen, Y.-P., Yuan, S., Wang, K., … Zhou, H.-C. (2016). A versatile synthetic route for the preparation of titanium metal–organic frameworks. Chem. Sci., 7(2), 1063-1069. doi:10.1039/c5sc03620h es_ES
dc.description.references Santaclara, J. G., Olivos-Suarez, A. I., Gonzalez-Nelson, A., Osadchii, D., Nasalevich, M. A., van der Veen, M. A., … Gascon, J. (2017). Revisiting the Incorporation of Ti(IV) in UiO-type Metal–Organic Frameworks: Metal Exchange versus Grafting and Their Implications on Photocatalysis. Chemistry of Materials, 29(21), 8963-8967. doi:10.1021/acs.chemmater.7b03320 es_ES
dc.description.references Denny, M. S., Parent, L. R., Patterson, J. P., Meena, S. K., Pham, H., Abellan, P., … Cohen, S. M. (2018). Transmission Electron Microscopy Reveals Deposition of Metal Oxide Coatings onto Metal–Organic Frameworks. Journal of the American Chemical Society, 140(4), 1348-1357. doi:10.1021/jacs.7b10453 es_ES
dc.description.references Guillerm, V., Gross, S., Serre, C., Devic, T., Bauer, M., & Férey, G. (2010). A zirconium methacrylate oxocluster as precursor for the low-temperature synthesis of porous zirconium(iv) dicarboxylates. Chem. Commun., 46(5), 767-769. doi:10.1039/b914919h es_ES
dc.description.references Feng, D., Wang, K., Wei, Z., Chen, Y.-P., Simon, C. M., Arvapally, R. K., … Zhou, H.-C. (2014). Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal–organic frameworks. Nature Communications, 5(1). doi:10.1038/ncomms6723 es_ES
dc.description.references Férey, G., Serre, C., Mellot-Draznieks, C., Millange, F., Surblé, S., Dutour, J., & Margiolaki, I. (2004). A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry, Simulation, and Powder Diffraction. Angewandte Chemie International Edition, 43(46), 6296-6301. doi:10.1002/anie.200460592 es_ES
dc.description.references Horcajada, P., Surblé, S., Serre, C., Hong, D.-Y., Seo, Y.-K., Chang, J.-S., … Férey, G. (2007). Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores. Chem. Commun., (27), 2820-2822. doi:10.1039/b704325b es_ES
dc.description.references Sonnauer, A., Hoffmann, F., Fröba, M., Kienle, L., Duppel, V., Thommes, M., … Stock, N. (2009). Giant Pores in a Chromium 2,6-Naphthalenedicarboxylate Open-Framework Structure with MIL-101 Topology. Angewandte Chemie International Edition, 48(21), 3791-3794. doi:10.1002/anie.200805980 es_ES
dc.description.references Yoon, J. W., Seo, Y.-K., Hwang, Y. K., Chang, J.-S., Leclerc, H., Wuttke, S., … Férey, G. (2010). Controlled Reducibility of a Metal-Organic Framework with Coordinatively Unsaturated Sites for Preferential Gas Sorption. Angewandte Chemie International Edition, 49(34), 5949-5952. doi:10.1002/anie.201001230 es_ES
dc.description.references D. R. Lide , CRC Handbook of Chemistry and Physics , CRC Press , 85th edn, 2004 , vol. 127 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem