Mostrar el registro sencillo del ítem
dc.contributor.author | Castells-Gil, Javier | es_ES |
dc.contributor.author | Padial, Natalia M. | es_ES |
dc.contributor.author | Almora-Barrios, Neyvis | es_ES |
dc.contributor.author | da Silva, Ivan | es_ES |
dc.contributor.author | Mateo-Mateo, Diego | es_ES |
dc.contributor.author | Albero-Sancho, Josep | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.contributor.author | Martí-Gastaldo, Carlos | es_ES |
dc.date.accessioned | 2020-11-13T04:32:09Z | |
dc.date.available | 2020-11-13T04:32:09Z | |
dc.date.issued | 2019-04-21 | es_ES |
dc.identifier.issn | 2041-6520 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/154996 | |
dc.description.abstract | [EN] Most developments in the chemistry and applications of metal-organic frameworks (MOFs) have been made possible thanks to the value of reticular chemistry in guiding the unlimited combination of organic connectors and secondary building units (SBUs) into targeted architectures. However, the development of new titanium-frameworks still remains limited by the difficulties in controlling the formation of persistent Ti-SBUs with predetermined directionality amenable to the isoreticular approach. Here we report the synthesis of a mesoporous Ti-MOF displaying a MIL-100 topology. MIL-100(Ti) combines excellent chemical stability and mesoporosity, intrinsic to this archetypical family of porous materials, with photoactive Ti-3((3)-O) metal-oxo clusters. By using high-throughput synthetic methodologies, we have confirmed that the formation of this SBU is thermodynamically favored as it is not strictly dependent on the metal precursor of choice and can be regarded as an adequate building block to control the design of new Ti-MOF architectures. We are confident that the addition of a mesoporous solid to the small number of crystalline, porous titanium-frameworks available will be a valuable asset to accelerate the development of new porous photocatalysts without the pore size limitations currently imposed by the microporous materials available. | es_ES |
dc.description.sponsorship | This work was supported by the EU (ERC Stg Chem-fs-MOF 714122) and Spanish MINECO (MDM-2015-0538 & CTQ2017-83486-P). C. M.-G. and J. C.-G. thank the Spanish MINECO for a Ramon y Cajal Fellowship (RYC-2012-10894) and FPI Scholarship (CTQ2014-59209-P). N. M. P. thanks the European Union for a Marie Skodowska-Curie Global Fellowship (H2020-MSCA-IF-2016-GF-749359-EnanSET). We thank the ISIS Facility for the access to synchrotron radiation, BSC-RES and Prof. Enrique Orti for computational resources and Belen Lerma-Berlanga for technical help. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation | ERC/ERC Stg Chem-fs-MOF 714122 | es_ES |
dc.relation.ispartof | Chemical Science | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | De novo synthesis of mesoporous photoactive titanium(iv)-organic frameworks with MIL-100 topology | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c8sc05218b | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/749359/EU/Homogeneous and heterogeneous enantioselective Single Electron Transfer (SET) catalysis in cross-coupling reactions/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-83486-P/ES/REDES METAL-ORGANICAS DE INSPIRACION BIOLOGICA: COMPLEJIDAD QUIMICA EN ENTORNOS DE PORO VERSATILES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2014-59209-P/ES/OLIMEROS DE COORDINACION MAGNETICOS SENSIBLES A ESTIMULOS QUIMICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/714122/Chemical Engineering of Functional Stable Metal-Organic Frameworks: Porous Crystals and Thin Film Devices/chem-fs-MOF/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MDM-2015-0538/ES/INSTITUTO DE CIENCIA MOLECULAR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RYC-2012-10894/ES/RYC-2012-10894/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Castells-Gil, J.; Padial, NM.; Almora-Barrios, N.; Da Silva, I.; Mateo-Mateo, D.; Albero-Sancho, J.; García Gómez, H.... (2019). De novo synthesis of mesoporous photoactive titanium(iv)-organic frameworks with MIL-100 topology. Chemical Science. 10(15):4313-4321. https://doi.org/10.1039/c8sc05218b | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c8sc05218b | es_ES |
dc.description.upvformatpinicio | 4313 | es_ES |
dc.description.upvformatpfin | 4321 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 15 | es_ES |
dc.identifier.pmid | 31057758 | es_ES |
dc.identifier.pmcid | PMC6472189 | es_ES |
dc.relation.pasarela | S\407058 | es_ES |
dc.contributor.funder | European Research Council | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Commission | |
dc.description.references | Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 1230444. doi:10.1126/science.1230444 | es_ES |
dc.description.references | Jagadeesh, R. V., Murugesan, K., Alshammari, A. S., Neumann, H., Pohl, M.-M., Radnik, J., & Beller, M. (2017). MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science, 358(6361), 326-332. doi:10.1126/science.aan6245 | es_ES |
dc.description.references | Cadiau, A., Belmabkhout, Y., Adil, K., Bhatt, P. M., Pillai, R. S., Shkurenko, A., … Eddaoudi, M. (2017). Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration. Science, 356(6339), 731-735. doi:10.1126/science.aam8310 | es_ES |
dc.description.references | Kim, H., Yang, S., Rao, S. R., Narayanan, S., Kapustin, E. A., Furukawa, H., … Wang, E. N. (2017). Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science, 356(6336), 430-434. doi:10.1126/science.aam8743 | es_ES |
dc.description.references | Sheberla, D., Bachman, J. C., Elias, J. S., Sun, C.-J., Shao-Horn, Y., & Dincă, M. (2016). Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature Materials, 16(2), 220-224. doi:10.1038/nmat4766 | es_ES |
dc.description.references | Mondloch, J. E., Katz, M. J., Isley III, W. C., Ghosh, P., Liao, P., Bury, W., … Farha, O. K. (2015). Destruction of chemical warfare agents using metal–organic frameworks. Nature Materials, 14(5), 512-516. doi:10.1038/nmat4238 | es_ES |
dc.description.references | Howarth, A. J., Liu, Y., Li, P., Li, Z., Wang, T. C., Hupp, J. T., & Farha, O. K. (2016). Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials, 1(3). doi:10.1038/natrevmats.2015.18 | es_ES |
dc.description.references | Colombo, V., Galli, S., Choi, H. J., Han, G. D., Maspero, A., Palmisano, G., … Long, J. R. (2011). High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites. Chemical Science, 2(7), 1311. doi:10.1039/c1sc00136a | es_ES |
dc.description.references | Assi, H., Mouchaham, G., Steunou, N., Devic, T., & Serre, C. (2017). Titanium coordination compounds: from discrete metal complexes to metal–organic frameworks. Chemical Society Reviews, 46(11), 3431-3452. doi:10.1039/c7cs00001d | es_ES |
dc.description.references | Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953 | es_ES |
dc.description.references | Bai, Y., Dou, Y., Xie, L.-H., Rutledge, W., Li, J.-R., & Zhou, H.-C. (2016). Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chemical Society Reviews, 45(8), 2327-2367. doi:10.1039/c5cs00837a | es_ES |
dc.description.references | Devic, T., & Serre, C. (2014). High valence 3p and transition metal based MOFs. Chem. Soc. Rev., 43(16), 6097-6115. doi:10.1039/c4cs00081a | es_ES |
dc.description.references | Kim, M., & Cohen, S. M. (2012). Discovery, development, and functionalization of Zr(iv)-based metal–organic frameworks. CrystEngComm, 14(12), 4096-4104. doi:10.1039/c2ce06491j | es_ES |
dc.description.references | Wang, S., Kitao, T., Guillou, N., Wahiduzzaman, M., Martineau-Corcos, C., Nouar, F., … Serre, C. (2018). A phase transformable ultrastable titanium-carboxylate framework for photoconduction. Nature Communications, 9(1). doi:10.1038/s41467-018-04034-w | es_ES |
dc.description.references | Dan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., & Férey, G. (2009). A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate. Journal of the American Chemical Society, 131(31), 10857-10859. doi:10.1021/ja903726m | es_ES |
dc.description.references | Yuan, S., Liu, T.-F., Feng, D., Tian, J., Wang, K., Qin, J., … Zhou, H.-C. (2015). A single crystalline porphyrinic titanium metal–organic framework. Chemical Science, 6(7), 3926-3930. doi:10.1039/c5sc00916b | es_ES |
dc.description.references | Nguyen, H. L., Gándara, F., Furukawa, H., Doan, T. L. H., Cordova, K. E., & Yaghi, O. M. (2016). A Titanium–Organic Framework as an Exemplar of Combining the Chemistry of Metal– and Covalent–Organic Frameworks. Journal of the American Chemical Society, 138(13), 4330-4333. doi:10.1021/jacs.6b01233 | es_ES |
dc.description.references | Wang, C., Liu, C., He, X., & Sun, Z.-M. (2017). A cluster-based mesoporous Ti-MOF with sodalite supercages. Chem. Commun., 53(85), 11670-11673. doi:10.1039/c7cc06652j | es_ES |
dc.description.references | Yuan, S., Qin, J.-S., Xu, H.-Q., Su, J., Rossi, D., Chen, Y., … Zhou, H.-C. (2017). [Ti8Zr2O12(COO)16] Cluster: An Ideal Inorganic Building Unit for Photoactive Metal–Organic Frameworks. ACS Central Science, 4(1), 105-111. doi:10.1021/acscentsci.7b00497 | es_ES |
dc.description.references | Castells-Gil, J., Padial, N. M., Almora-Barrios, N., Albero, J., Ruiz-Salvador, A. R., González-Platas, J., … Martí-Gastaldo, C. (2018). Chemical Engineering of Photoactivity in Heterometallic Titanium-Organic Frameworks by Metal Doping. Angewandte Chemie International Edition, 57(28), 8453-8457. doi:10.1002/anie.201802089 | es_ES |
dc.description.references | Gao, J., Miao, J., Li, P.-Z., Teng, W. Y., Yang, L., Zhao, Y., … Zhang, Q. (2014). A p-type Ti(iv)-based metal–organic framework with visible-light photo-response. Chem. Commun., 50(29), 3786-3788. doi:10.1039/c3cc49440c | es_ES |
dc.description.references | Nguyen, N. T. T., Furukawa, H., Gándara, F., Trickett, C. A., Jeong, H. M., Cordova, K. E., & Yaghi, O. M. (2015). Three-Dimensional Metal-Catecholate Frameworks and Their Ultrahigh Proton Conductivity. Journal of the American Chemical Society, 137(49), 15394-15397. doi:10.1021/jacs.5b10999 | es_ES |
dc.description.references | Kim, M., Cahill, J. F., Fei, H., Prather, K. A., & Cohen, S. M. (2012). Postsynthetic Ligand and Cation Exchange in Robust Metal–Organic Frameworks. Journal of the American Chemical Society, 134(43), 18082-18088. doi:10.1021/ja3079219 | es_ES |
dc.description.references | Zou, L., Feng, D., Liu, T.-F., Chen, Y.-P., Yuan, S., Wang, K., … Zhou, H.-C. (2016). A versatile synthetic route for the preparation of titanium metal–organic frameworks. Chem. Sci., 7(2), 1063-1069. doi:10.1039/c5sc03620h | es_ES |
dc.description.references | Santaclara, J. G., Olivos-Suarez, A. I., Gonzalez-Nelson, A., Osadchii, D., Nasalevich, M. A., van der Veen, M. A., … Gascon, J. (2017). Revisiting the Incorporation of Ti(IV) in UiO-type Metal–Organic Frameworks: Metal Exchange versus Grafting and Their Implications on Photocatalysis. Chemistry of Materials, 29(21), 8963-8967. doi:10.1021/acs.chemmater.7b03320 | es_ES |
dc.description.references | Denny, M. S., Parent, L. R., Patterson, J. P., Meena, S. K., Pham, H., Abellan, P., … Cohen, S. M. (2018). Transmission Electron Microscopy Reveals Deposition of Metal Oxide Coatings onto Metal–Organic Frameworks. Journal of the American Chemical Society, 140(4), 1348-1357. doi:10.1021/jacs.7b10453 | es_ES |
dc.description.references | Guillerm, V., Gross, S., Serre, C., Devic, T., Bauer, M., & Férey, G. (2010). A zirconium methacrylate oxocluster as precursor for the low-temperature synthesis of porous zirconium(iv) dicarboxylates. Chem. Commun., 46(5), 767-769. doi:10.1039/b914919h | es_ES |
dc.description.references | Feng, D., Wang, K., Wei, Z., Chen, Y.-P., Simon, C. M., Arvapally, R. K., … Zhou, H.-C. (2014). Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal–organic frameworks. Nature Communications, 5(1). doi:10.1038/ncomms6723 | es_ES |
dc.description.references | Férey, G., Serre, C., Mellot-Draznieks, C., Millange, F., Surblé, S., Dutour, J., & Margiolaki, I. (2004). A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry, Simulation, and Powder Diffraction. Angewandte Chemie International Edition, 43(46), 6296-6301. doi:10.1002/anie.200460592 | es_ES |
dc.description.references | Horcajada, P., Surblé, S., Serre, C., Hong, D.-Y., Seo, Y.-K., Chang, J.-S., … Férey, G. (2007). Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores. Chem. Commun., (27), 2820-2822. doi:10.1039/b704325b | es_ES |
dc.description.references | Sonnauer, A., Hoffmann, F., Fröba, M., Kienle, L., Duppel, V., Thommes, M., … Stock, N. (2009). Giant Pores in a Chromium 2,6-Naphthalenedicarboxylate Open-Framework Structure with MIL-101 Topology. Angewandte Chemie International Edition, 48(21), 3791-3794. doi:10.1002/anie.200805980 | es_ES |
dc.description.references | Yoon, J. W., Seo, Y.-K., Hwang, Y. K., Chang, J.-S., Leclerc, H., Wuttke, S., … Férey, G. (2010). Controlled Reducibility of a Metal-Organic Framework with Coordinatively Unsaturated Sites for Preferential Gas Sorption. Angewandte Chemie International Edition, 49(34), 5949-5952. doi:10.1002/anie.201001230 | es_ES |
dc.description.references | D. R. Lide , CRC Handbook of Chemistry and Physics , CRC Press , 85th edn, 2004 , vol. 127 | es_ES |