- -

De novo synthesis of mesoporous photoactive titanium(iv)-organic frameworks with MIL-100 topology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

De novo synthesis of mesoporous photoactive titanium(iv)-organic frameworks with MIL-100 topology

Mostrar el registro completo del ítem

Castells-Gil, J.; Padial, NM.; Almora-Barrios, N.; Da Silva, I.; Mateo-Mateo, D.; Albero-Sancho, J.; García Gómez, H.... (2019). De novo synthesis of mesoporous photoactive titanium(iv)-organic frameworks with MIL-100 topology. Chemical Science. 10(15):4313-4321. https://doi.org/10.1039/c8sc05218b

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/154996

Ficheros en el ítem

Metadatos del ítem

Título: De novo synthesis of mesoporous photoactive titanium(iv)-organic frameworks with MIL-100 topology
Autor: Castells-Gil, Javier Padial, Natalia M. Almora-Barrios, Neyvis da Silva, Ivan Mateo-Mateo, Diego Albero-Sancho, Josep García Gómez, Hermenegildo Martí-Gastaldo, Carlos
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Most developments in the chemistry and applications of metal-organic frameworks (MOFs) have been made possible thanks to the value of reticular chemistry in guiding the unlimited combination of organic connectors and ...[+]
Derechos de uso: Reconocimiento - No comercial (by-nc)
Fuente:
Chemical Science. (issn: 2041-6520 )
DOI: 10.1039/c8sc05218b
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c8sc05218b
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/749359/EU/Homogeneous and heterogeneous enantioselective Single Electron Transfer (SET) catalysis in cross-coupling reactions/
ERC/ERC Stg Chem-fs-MOF 714122
...[+]
info:eu-repo/grantAgreement/EC/H2020/749359/EU/Homogeneous and heterogeneous enantioselective Single Electron Transfer (SET) catalysis in cross-coupling reactions/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-83486-P/ES/REDES METAL-ORGANICAS DE INSPIRACION BIOLOGICA: COMPLEJIDAD QUIMICA EN ENTORNOS DE PORO VERSATILES/
info:eu-repo/grantAgreement/MINECO//CTQ2014-59209-P/ES/OLIMEROS DE COORDINACION MAGNETICOS SENSIBLES A ESTIMULOS QUIMICOS/
info:eu-repo/grantAgreement/EC/H2020/714122/Chemical Engineering of Functional Stable Metal-Organic Frameworks: Porous Crystals and Thin Film Devices/chem-fs-MOF/
info:eu-repo/grantAgreement/MINECO//MDM-2015-0538/ES/INSTITUTO DE CIENCIA MOLECULAR/
info:eu-repo/grantAgreement/MINECO//RYC-2012-10894/ES/RYC-2012-10894/
ERC/ERC Stg Chem-fs-MOF 714122
[-]
Agradecimientos:
This work was supported by the EU (ERC Stg Chem-fs-MOF 714122) and Spanish MINECO (MDM-2015-0538 & CTQ2017-83486-P). C. M.-G. and J. C.-G. thank the Spanish MINECO for a Ramon y Cajal Fellowship (RYC-2012-10894) and FPI ...[+]
Tipo: Artículo

References

Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 1230444. doi:10.1126/science.1230444

Jagadeesh, R. V., Murugesan, K., Alshammari, A. S., Neumann, H., Pohl, M.-M., Radnik, J., & Beller, M. (2017). MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science, 358(6361), 326-332. doi:10.1126/science.aan6245

Cadiau, A., Belmabkhout, Y., Adil, K., Bhatt, P. M., Pillai, R. S., Shkurenko, A., … Eddaoudi, M. (2017). Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration. Science, 356(6339), 731-735. doi:10.1126/science.aam8310 [+]
Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 1230444. doi:10.1126/science.1230444

Jagadeesh, R. V., Murugesan, K., Alshammari, A. S., Neumann, H., Pohl, M.-M., Radnik, J., & Beller, M. (2017). MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science, 358(6361), 326-332. doi:10.1126/science.aan6245

Cadiau, A., Belmabkhout, Y., Adil, K., Bhatt, P. M., Pillai, R. S., Shkurenko, A., … Eddaoudi, M. (2017). Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration. Science, 356(6339), 731-735. doi:10.1126/science.aam8310

Kim, H., Yang, S., Rao, S. R., Narayanan, S., Kapustin, E. A., Furukawa, H., … Wang, E. N. (2017). Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science, 356(6336), 430-434. doi:10.1126/science.aam8743

Sheberla, D., Bachman, J. C., Elias, J. S., Sun, C.-J., Shao-Horn, Y., & Dincă, M. (2016). Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature Materials, 16(2), 220-224. doi:10.1038/nmat4766

Mondloch, J. E., Katz, M. J., Isley III, W. C., Ghosh, P., Liao, P., Bury, W., … Farha, O. K. (2015). Destruction of chemical warfare agents using metal–organic frameworks. Nature Materials, 14(5), 512-516. doi:10.1038/nmat4238

Howarth, A. J., Liu, Y., Li, P., Li, Z., Wang, T. C., Hupp, J. T., & Farha, O. K. (2016). Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials, 1(3). doi:10.1038/natrevmats.2015.18

Colombo, V., Galli, S., Choi, H. J., Han, G. D., Maspero, A., Palmisano, G., … Long, J. R. (2011). High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites. Chemical Science, 2(7), 1311. doi:10.1039/c1sc00136a

Assi, H., Mouchaham, G., Steunou, N., Devic, T., & Serre, C. (2017). Titanium coordination compounds: from discrete metal complexes to metal–organic frameworks. Chemical Society Reviews, 46(11), 3431-3452. doi:10.1039/c7cs00001d

Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953

Bai, Y., Dou, Y., Xie, L.-H., Rutledge, W., Li, J.-R., & Zhou, H.-C. (2016). Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chemical Society Reviews, 45(8), 2327-2367. doi:10.1039/c5cs00837a

Devic, T., & Serre, C. (2014). High valence 3p and transition metal based MOFs. Chem. Soc. Rev., 43(16), 6097-6115. doi:10.1039/c4cs00081a

Kim, M., & Cohen, S. M. (2012). Discovery, development, and functionalization of Zr(iv)-based metal–organic frameworks. CrystEngComm, 14(12), 4096-4104. doi:10.1039/c2ce06491j

Wang, S., Kitao, T., Guillou, N., Wahiduzzaman, M., Martineau-Corcos, C., Nouar, F., … Serre, C. (2018). A phase transformable ultrastable titanium-carboxylate framework for photoconduction. Nature Communications, 9(1). doi:10.1038/s41467-018-04034-w

Dan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., & Férey, G. (2009). A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate. Journal of the American Chemical Society, 131(31), 10857-10859. doi:10.1021/ja903726m

Yuan, S., Liu, T.-F., Feng, D., Tian, J., Wang, K., Qin, J., … Zhou, H.-C. (2015). A single crystalline porphyrinic titanium metal–organic framework. Chemical Science, 6(7), 3926-3930. doi:10.1039/c5sc00916b

Nguyen, H. L., Gándara, F., Furukawa, H., Doan, T. L. H., Cordova, K. E., & Yaghi, O. M. (2016). A Titanium–Organic Framework as an Exemplar of Combining the Chemistry of Metal– and Covalent–Organic Frameworks. Journal of the American Chemical Society, 138(13), 4330-4333. doi:10.1021/jacs.6b01233

Wang, C., Liu, C., He, X., & Sun, Z.-M. (2017). A cluster-based mesoporous Ti-MOF with sodalite supercages. Chem. Commun., 53(85), 11670-11673. doi:10.1039/c7cc06652j

Yuan, S., Qin, J.-S., Xu, H.-Q., Su, J., Rossi, D., Chen, Y., … Zhou, H.-C. (2017). [Ti8Zr2O12(COO)16] Cluster: An Ideal Inorganic Building Unit for Photoactive Metal–Organic Frameworks. ACS Central Science, 4(1), 105-111. doi:10.1021/acscentsci.7b00497

Castells-Gil, J., Padial, N. M., Almora-Barrios, N., Albero, J., Ruiz-Salvador, A. R., González-Platas, J., … Martí-Gastaldo, C. (2018). Chemical Engineering of Photoactivity in Heterometallic Titanium-Organic Frameworks by Metal Doping. Angewandte Chemie International Edition, 57(28), 8453-8457. doi:10.1002/anie.201802089

Gao, J., Miao, J., Li, P.-Z., Teng, W. Y., Yang, L., Zhao, Y., … Zhang, Q. (2014). A p-type Ti(iv)-based metal–organic framework with visible-light photo-response. Chem. Commun., 50(29), 3786-3788. doi:10.1039/c3cc49440c

Nguyen, N. T. T., Furukawa, H., Gándara, F., Trickett, C. A., Jeong, H. M., Cordova, K. E., & Yaghi, O. M. (2015). Three-Dimensional Metal-Catecholate Frameworks and Their Ultrahigh Proton Conductivity. Journal of the American Chemical Society, 137(49), 15394-15397. doi:10.1021/jacs.5b10999

Kim, M., Cahill, J. F., Fei, H., Prather, K. A., & Cohen, S. M. (2012). Postsynthetic Ligand and Cation Exchange in Robust Metal–Organic Frameworks. Journal of the American Chemical Society, 134(43), 18082-18088. doi:10.1021/ja3079219

Zou, L., Feng, D., Liu, T.-F., Chen, Y.-P., Yuan, S., Wang, K., … Zhou, H.-C. (2016). A versatile synthetic route for the preparation of titanium metal–organic frameworks. Chem. Sci., 7(2), 1063-1069. doi:10.1039/c5sc03620h

Santaclara, J. G., Olivos-Suarez, A. I., Gonzalez-Nelson, A., Osadchii, D., Nasalevich, M. A., van der Veen, M. A., … Gascon, J. (2017). Revisiting the Incorporation of Ti(IV) in UiO-type Metal–Organic Frameworks: Metal Exchange versus Grafting and Their Implications on Photocatalysis. Chemistry of Materials, 29(21), 8963-8967. doi:10.1021/acs.chemmater.7b03320

Denny, M. S., Parent, L. R., Patterson, J. P., Meena, S. K., Pham, H., Abellan, P., … Cohen, S. M. (2018). Transmission Electron Microscopy Reveals Deposition of Metal Oxide Coatings onto Metal–Organic Frameworks. Journal of the American Chemical Society, 140(4), 1348-1357. doi:10.1021/jacs.7b10453

Guillerm, V., Gross, S., Serre, C., Devic, T., Bauer, M., & Férey, G. (2010). A zirconium methacrylate oxocluster as precursor for the low-temperature synthesis of porous zirconium(iv) dicarboxylates. Chem. Commun., 46(5), 767-769. doi:10.1039/b914919h

Feng, D., Wang, K., Wei, Z., Chen, Y.-P., Simon, C. M., Arvapally, R. K., … Zhou, H.-C. (2014). Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal–organic frameworks. Nature Communications, 5(1). doi:10.1038/ncomms6723

Férey, G., Serre, C., Mellot-Draznieks, C., Millange, F., Surblé, S., Dutour, J., & Margiolaki, I. (2004). A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry, Simulation, and Powder Diffraction. Angewandte Chemie International Edition, 43(46), 6296-6301. doi:10.1002/anie.200460592

Horcajada, P., Surblé, S., Serre, C., Hong, D.-Y., Seo, Y.-K., Chang, J.-S., … Férey, G. (2007). Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores. Chem. Commun., (27), 2820-2822. doi:10.1039/b704325b

Sonnauer, A., Hoffmann, F., Fröba, M., Kienle, L., Duppel, V., Thommes, M., … Stock, N. (2009). Giant Pores in a Chromium 2,6-Naphthalenedicarboxylate Open-Framework Structure with MIL-101 Topology. Angewandte Chemie International Edition, 48(21), 3791-3794. doi:10.1002/anie.200805980

Yoon, J. W., Seo, Y.-K., Hwang, Y. K., Chang, J.-S., Leclerc, H., Wuttke, S., … Férey, G. (2010). Controlled Reducibility of a Metal-Organic Framework with Coordinatively Unsaturated Sites for Preferential Gas Sorption. Angewandte Chemie International Edition, 49(34), 5949-5952. doi:10.1002/anie.201001230

D. R. Lide , CRC Handbook of Chemistry and Physics , CRC Press , 85th edn, 2004 , vol. 127

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem