Mostrar el registro sencillo del ítem
dc.contributor.author | Liu, Lichen | es_ES |
dc.contributor.author | Arenal, Raul | es_ES |
dc.contributor.author | Meira, Debora M. | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.date.accessioned | 2020-11-13T04:32:12Z | |
dc.date.available | 2020-11-13T04:32:12Z | |
dc.date.issued | 2019-02-07 | es_ES |
dc.identifier.issn | 1359-7345 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/154997 | |
dc.description.abstract | [EN] In this work, we will report the generation of Au clusters in a purely siliceous MCM-22 zeolite. The catalytic properties of these Au clusters have been tested for the selective oxidation of cyclohexane to cyclohexanol and cyclohexanone (KA-oil). The Au clusters encapsulated in the MCM-22 zeolite are highly active and selective for the oxidation of cyclohexane to KA-oil, which is superior to Au nanoparticles on the same support. These results suggest that Au clusters are highly active for the activation of oxygen to produce radical species. | es_ES |
dc.description.sponsorship | This work has been supported by the European Union through the European Research Council (grant ERC-AdG-2014-671093, SynCatMatch) and the Spanish government through the "Severo Ochoa Program" (SEV-2016-0683). The authors also thank the Microscopy Service of UPV for kind help with TEM and STEM measurements. Mr J. A. Gaona is greatly acknowledged for his very helpful assistance on the catalytic studies. The XAS data were acquired at European Synchrotron Radiation Facility. The HAADF-HRSTEM studies were conducted in the Laboratorio de Microscopias Avanzadas (LMA) at the Instituto de Nanociencia de Aragon (INA)-Universidad de Zaragoza (Spain), Spanish ICTS National facility. R. A. gratefully acknowledges the support from the Spanish Ministry of Economy and Competitiveness (MINECO) through project grant MAT2016-79776-P (AEI/FEDER, UE). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Chemical Communications | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Generation of gold nanoclusters encapsulated in an MCM-22 zeolite for the aerobic oxidation of cyclohexane | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c8cc07185c | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2016-79776-P/ES/AJUSTE DE LAS PROPIEDADES OPTOELECTRONICAS DE NANOESTRUCTURAS: SU (TRANS)FORMACION Y ESTUDIOS AVANVAZADOS SOBRE SU CONFIGURACION ATOMICA Y ESTUCTURAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Liu, L.; Arenal, R.; Meira, DM.; Corma Canós, A. (2019). Generation of gold nanoclusters encapsulated in an MCM-22 zeolite for the aerobic oxidation of cyclohexane. Chemical Communications. 55(11):1607-1610. https://doi.org/10.1039/c8cc07185c | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c8cc07185c | es_ES |
dc.description.upvformatpinicio | 1607 | es_ES |
dc.description.upvformatpfin | 1610 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 55 | es_ES |
dc.description.issue | 11 | es_ES |
dc.identifier.pmid | 30657161 | es_ES |
dc.identifier.pmcid | PMC6369674 | es_ES |
dc.relation.pasarela | S\409973 | es_ES |
dc.contributor.funder | European Research Council | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | European Commission | |
dc.description.references | Claus, P. (2005). Heterogeneously catalysed hydrogenation using gold catalysts. Applied Catalysis A: General, 291(1-2), 222-229. doi:10.1016/j.apcata.2004.12.048 | es_ES |
dc.description.references | Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold Catalysis. Angewandte Chemie International Edition, 45(47), 7896-7936. doi:10.1002/anie.200602454 | es_ES |
dc.description.references | Liu, L., & Corma, A. (2018). Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 118(10), 4981-5079. doi:10.1021/acs.chemrev.7b00776 | es_ES |
dc.description.references | Valden, M. (1998). Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science, 281(5383), 1647-1650. doi:10.1126/science.281.5383.1647 | es_ES |
dc.description.references | Hvolbæk, B., Janssens, T. V. W., Clausen, B. S., Falsig, H., Christensen, C. H., & Nørskov, J. K. (2007). Catalytic activity of Au nanoparticles. Nano Today, 2(4), 14-18. doi:10.1016/s1748-0132(07)70113-5 | es_ES |
dc.description.references | Oliver-Meseguer, J., Cabrero-Antonino, J. R., Dominguez, I., Leyva-Perez, A., & Corma, A. (2012). Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 107 at Room Temperature. Science, 338(6113), 1452-1455. doi:10.1126/science.1227813 | es_ES |
dc.description.references | Corma, A., Concepción, P., Boronat, M., Sabater, M. J., Navas, J., Yacaman, M. J., … Mayoral, A. (2013). Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nature Chemistry, 5(9), 775-781. doi:10.1038/nchem.1721 | es_ES |
dc.description.references | Boronat, M., Leyva-Pérez, A., & Corma, A. (2013). Theoretical and Experimental Insights into the Origin of the Catalytic Activity of Subnanometric Gold Clusters: Attempts to Predict Reactivity with Clusters and Nanoparticles of Gold. Accounts of Chemical Research, 47(3), 834-844. doi:10.1021/ar400068w | es_ES |
dc.description.references | Yamazoe, S., Koyasu, K., & Tsukuda, T. (2013). Nonscalable Oxidation Catalysis of Gold Clusters. Accounts of Chemical Research, 47(3), 816-824. doi:10.1021/ar400209a | es_ES |
dc.description.references | Bore, M. T., Pham, H. N., Switzer, E. E., Ward, T. L., Fukuoka, A., & Datye, A. K. (2005). The Role of Pore Size and Structure on the Thermal Stability of Gold Nanoparticles within Mesoporous Silica. The Journal of Physical Chemistry B, 109(7), 2873-2880. doi:10.1021/jp045917p | es_ES |
dc.description.references | Otto, T., Zones, S. I., & Iglesia, E. (2016). Challenges and strategies in the encapsulation and stabilization of monodisperse Au clusters within zeolites. Journal of Catalysis, 339, 195-208. doi:10.1016/j.jcat.2016.04.015 | es_ES |
dc.description.references | Liu, L., Díaz, U., Arenal, R., Agostini, G., Concepción, P., & Corma, A. (2016). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials, 16(1), 132-138. doi:10.1038/nmat4757 | es_ES |
dc.description.references | Liu, L., Zakharov, D. N., Arenal, R., Concepcion, P., Stach, E. A., & Corma, A. (2018). Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nature Communications, 9(1). doi:10.1038/s41467-018-03012-6 | es_ES |
dc.description.references | Xue, Y., Li, X., Li, H., & Zhang, W. (2014). Quantifying thiol–gold interactions towards the efficient strength control. Nature Communications, 5(1). doi:10.1038/ncomms5348 | es_ES |
dc.description.references | Pensa, E., Cortés, E., Corthey, G., Carro, P., Vericat, C., Fonticelli, M. H., … Salvarezza, R. C. (2012). The Chemistry of the Sulfur–Gold Interface: In Search of a Unified Model. Accounts of Chemical Research, 45(8), 1183-1192. doi:10.1021/ar200260p | es_ES |
dc.description.references | Shivhare, A., Chevrier, D. M., Purves, R. W., & Scott, R. W. J. (2013). Following the Thermal Activation of Au25(SR)18 Clusters for Catalysis by X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C, 117(39), 20007-20016. doi:10.1021/jp4063687 | es_ES |
dc.description.references | Miller, J. T., Kropf, A. J., Zha, Y., Regalbuto, J. R., Delannoy, L., Louis, C., … van Bokhoven, J. A. (2006). The effect of gold particle size on AuAu bond length and reactivity toward oxygen in supported catalysts. Journal of Catalysis, 240(2), 222-234. doi:10.1016/j.jcat.2006.04.004 | es_ES |
dc.description.references | Zhu, M., Aikens, C. M., Hollander, F. J., Schatz, G. C., & Jin, R. (2008). Correlating the Crystal Structure of A Thiol-Protected Au25Cluster and Optical Properties. Journal of the American Chemical Society, 130(18), 5883-5885. doi:10.1021/ja801173r | es_ES |
dc.description.references | I. Hermans , Liquid Phase Aerobic Oxidation Catalysis-Industrial Applications and Academic Perspectives , ed. S. Stahl and P. Alsters , 2015 | es_ES |
dc.description.references | Hereijgers, B. P. C., & Weckhuysen, B. M. (2010). Aerobic oxidation of cyclohexane by gold-based catalysts: New mechanistic insight by thorough product analysis. Journal of Catalysis, 270(1), 16-25. doi:10.1016/j.jcat.2009.12.003 | es_ES |
dc.description.references | Hermans, I., Jacobs, P. A., & Peeters, J. (2006). To the Core of Autocatalysis in Cyclohexane Autoxidation. Chemistry - A European Journal, 12(16), 4229-4240. doi:10.1002/chem.200600189 | es_ES |
dc.description.references | Conte, M., Liu, X., Murphy, D. M., Whiston, K., & Hutchings, G. J. (2012). Cyclohexane oxidation using Au/MgO: an investigation of the reaction mechanism. Physical Chemistry Chemical Physics, 14(47), 16279. doi:10.1039/c2cp43363j | es_ES |
dc.description.references | Qian, L., Wang, Z., Beletskiy, E. V., Liu, J., dos Santos, H. J., Li, T., … Kung, H. H. (2017). Stable and solubilized active Au atom clusters for selective epoxidation of cis-cyclooctene with molecular oxygen. Nature Communications, 8(1). doi:10.1038/ncomms14881 | es_ES |