- -

Generation of gold nanoclusters encapsulated in an MCM-22 zeolite for the aerobic oxidation of cyclohexane

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Generation of gold nanoclusters encapsulated in an MCM-22 zeolite for the aerobic oxidation of cyclohexane

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Liu, Lichen es_ES
dc.contributor.author Arenal, Raul es_ES
dc.contributor.author Meira, Debora M. es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2020-11-13T04:32:12Z
dc.date.available 2020-11-13T04:32:12Z
dc.date.issued 2019-02-07 es_ES
dc.identifier.issn 1359-7345 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154997
dc.description.abstract [EN] In this work, we will report the generation of Au clusters in a purely siliceous MCM-22 zeolite. The catalytic properties of these Au clusters have been tested for the selective oxidation of cyclohexane to cyclohexanol and cyclohexanone (KA-oil). The Au clusters encapsulated in the MCM-22 zeolite are highly active and selective for the oxidation of cyclohexane to KA-oil, which is superior to Au nanoparticles on the same support. These results suggest that Au clusters are highly active for the activation of oxygen to produce radical species. es_ES
dc.description.sponsorship This work has been supported by the European Union through the European Research Council (grant ERC-AdG-2014-671093, SynCatMatch) and the Spanish government through the "Severo Ochoa Program" (SEV-2016-0683). The authors also thank the Microscopy Service of UPV for kind help with TEM and STEM measurements. Mr J. A. Gaona is greatly acknowledged for his very helpful assistance on the catalytic studies. The XAS data were acquired at European Synchrotron Radiation Facility. The HAADF-HRSTEM studies were conducted in the Laboratorio de Microscopias Avanzadas (LMA) at the Instituto de Nanociencia de Aragon (INA)-Universidad de Zaragoza (Spain), Spanish ICTS National facility. R. A. gratefully acknowledges the support from the Spanish Ministry of Economy and Competitiveness (MINECO) through project grant MAT2016-79776-P (AEI/FEDER, UE). es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Communications es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Generation of gold nanoclusters encapsulated in an MCM-22 zeolite for the aerobic oxidation of cyclohexane es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c8cc07185c es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-79776-P/ES/AJUSTE DE LAS PROPIEDADES OPTOELECTRONICAS DE NANOESTRUCTURAS: SU (TRANS)FORMACION Y ESTUDIOS AVANVAZADOS SOBRE SU CONFIGURACION ATOMICA Y ESTUCTURAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Liu, L.; Arenal, R.; Meira, DM.; Corma Canós, A. (2019). Generation of gold nanoclusters encapsulated in an MCM-22 zeolite for the aerobic oxidation of cyclohexane. Chemical Communications. 55(11):1607-1610. https://doi.org/10.1039/c8cc07185c es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c8cc07185c es_ES
dc.description.upvformatpinicio 1607 es_ES
dc.description.upvformatpfin 1610 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 55 es_ES
dc.description.issue 11 es_ES
dc.identifier.pmid 30657161 es_ES
dc.identifier.pmcid PMC6369674 es_ES
dc.relation.pasarela S\409973 es_ES
dc.contributor.funder European Research Council es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Commission
dc.description.references Claus, P. (2005). Heterogeneously catalysed hydrogenation using gold catalysts. Applied Catalysis A: General, 291(1-2), 222-229. doi:10.1016/j.apcata.2004.12.048 es_ES
dc.description.references Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold Catalysis. Angewandte Chemie International Edition, 45(47), 7896-7936. doi:10.1002/anie.200602454 es_ES
dc.description.references Liu, L., & Corma, A. (2018). Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 118(10), 4981-5079. doi:10.1021/acs.chemrev.7b00776 es_ES
dc.description.references Valden, M. (1998). Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science, 281(5383), 1647-1650. doi:10.1126/science.281.5383.1647 es_ES
dc.description.references Hvolbæk, B., Janssens, T. V. W., Clausen, B. S., Falsig, H., Christensen, C. H., & Nørskov, J. K. (2007). Catalytic activity of Au nanoparticles. Nano Today, 2(4), 14-18. doi:10.1016/s1748-0132(07)70113-5 es_ES
dc.description.references Oliver-Meseguer, J., Cabrero-Antonino, J. R., Dominguez, I., Leyva-Perez, A., & Corma, A. (2012). Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 107 at Room Temperature. Science, 338(6113), 1452-1455. doi:10.1126/science.1227813 es_ES
dc.description.references Corma, A., Concepción, P., Boronat, M., Sabater, M. J., Navas, J., Yacaman, M. J., … Mayoral, A. (2013). Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nature Chemistry, 5(9), 775-781. doi:10.1038/nchem.1721 es_ES
dc.description.references Boronat, M., Leyva-Pérez, A., & Corma, A. (2013). Theoretical and Experimental Insights into the Origin of the Catalytic Activity of Subnanometric Gold Clusters: Attempts to Predict Reactivity with Clusters and Nanoparticles of Gold. Accounts of Chemical Research, 47(3), 834-844. doi:10.1021/ar400068w es_ES
dc.description.references Yamazoe, S., Koyasu, K., & Tsukuda, T. (2013). Nonscalable Oxidation Catalysis of Gold Clusters. Accounts of Chemical Research, 47(3), 816-824. doi:10.1021/ar400209a es_ES
dc.description.references Bore, M. T., Pham, H. N., Switzer, E. E., Ward, T. L., Fukuoka, A., & Datye, A. K. (2005). The Role of Pore Size and Structure on the Thermal Stability of Gold Nanoparticles within Mesoporous Silica. The Journal of Physical Chemistry B, 109(7), 2873-2880. doi:10.1021/jp045917p es_ES
dc.description.references Otto, T., Zones, S. I., & Iglesia, E. (2016). Challenges and strategies in the encapsulation and stabilization of monodisperse Au clusters within zeolites. Journal of Catalysis, 339, 195-208. doi:10.1016/j.jcat.2016.04.015 es_ES
dc.description.references Liu, L., Díaz, U., Arenal, R., Agostini, G., Concepción, P., & Corma, A. (2016). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials, 16(1), 132-138. doi:10.1038/nmat4757 es_ES
dc.description.references Liu, L., Zakharov, D. N., Arenal, R., Concepcion, P., Stach, E. A., & Corma, A. (2018). Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nature Communications, 9(1). doi:10.1038/s41467-018-03012-6 es_ES
dc.description.references Xue, Y., Li, X., Li, H., & Zhang, W. (2014). Quantifying thiol–gold interactions towards the efficient strength control. Nature Communications, 5(1). doi:10.1038/ncomms5348 es_ES
dc.description.references Pensa, E., Cortés, E., Corthey, G., Carro, P., Vericat, C., Fonticelli, M. H., … Salvarezza, R. C. (2012). The Chemistry of the Sulfur–Gold Interface: In Search of a Unified Model. Accounts of Chemical Research, 45(8), 1183-1192. doi:10.1021/ar200260p es_ES
dc.description.references Shivhare, A., Chevrier, D. M., Purves, R. W., & Scott, R. W. J. (2013). Following the Thermal Activation of Au25(SR)18 Clusters for Catalysis by X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C, 117(39), 20007-20016. doi:10.1021/jp4063687 es_ES
dc.description.references Miller, J. T., Kropf, A. J., Zha, Y., Regalbuto, J. R., Delannoy, L., Louis, C., … van Bokhoven, J. A. (2006). The effect of gold particle size on AuAu bond length and reactivity toward oxygen in supported catalysts. Journal of Catalysis, 240(2), 222-234. doi:10.1016/j.jcat.2006.04.004 es_ES
dc.description.references Zhu, M., Aikens, C. M., Hollander, F. J., Schatz, G. C., & Jin, R. (2008). Correlating the Crystal Structure of A Thiol-Protected Au25Cluster and Optical Properties. Journal of the American Chemical Society, 130(18), 5883-5885. doi:10.1021/ja801173r es_ES
dc.description.references I. Hermans , Liquid Phase Aerobic Oxidation Catalysis-Industrial Applications and Academic Perspectives , ed. S. Stahl and P. Alsters , 2015 es_ES
dc.description.references Hereijgers, B. P. C., & Weckhuysen, B. M. (2010). Aerobic oxidation of cyclohexane by gold-based catalysts: New mechanistic insight by thorough product analysis. Journal of Catalysis, 270(1), 16-25. doi:10.1016/j.jcat.2009.12.003 es_ES
dc.description.references Hermans, I., Jacobs, P. A., & Peeters, J. (2006). To the Core of Autocatalysis in Cyclohexane Autoxidation. Chemistry - A European Journal, 12(16), 4229-4240. doi:10.1002/chem.200600189 es_ES
dc.description.references Conte, M., Liu, X., Murphy, D. M., Whiston, K., & Hutchings, G. J. (2012). Cyclohexane oxidation using Au/MgO: an investigation of the reaction mechanism. Physical Chemistry Chemical Physics, 14(47), 16279. doi:10.1039/c2cp43363j es_ES
dc.description.references Qian, L., Wang, Z., Beletskiy, E. V., Liu, J., dos Santos, H. J., Li, T., … Kung, H. H. (2017). Stable and solubilized active Au atom clusters for selective epoxidation of cis-cyclooctene with molecular oxygen. Nature Communications, 8(1). doi:10.1038/ncomms14881 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem