Claus, P. (2005). Heterogeneously catalysed hydrogenation using gold catalysts. Applied Catalysis A: General, 291(1-2), 222-229. doi:10.1016/j.apcata.2004.12.048
Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold Catalysis. Angewandte Chemie International Edition, 45(47), 7896-7936. doi:10.1002/anie.200602454
Liu, L., & Corma, A. (2018). Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 118(10), 4981-5079. doi:10.1021/acs.chemrev.7b00776
[+]
Claus, P. (2005). Heterogeneously catalysed hydrogenation using gold catalysts. Applied Catalysis A: General, 291(1-2), 222-229. doi:10.1016/j.apcata.2004.12.048
Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold Catalysis. Angewandte Chemie International Edition, 45(47), 7896-7936. doi:10.1002/anie.200602454
Liu, L., & Corma, A. (2018). Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 118(10), 4981-5079. doi:10.1021/acs.chemrev.7b00776
Valden, M. (1998). Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science, 281(5383), 1647-1650. doi:10.1126/science.281.5383.1647
Hvolbæk, B., Janssens, T. V. W., Clausen, B. S., Falsig, H., Christensen, C. H., & Nørskov, J. K. (2007). Catalytic activity of Au nanoparticles. Nano Today, 2(4), 14-18. doi:10.1016/s1748-0132(07)70113-5
Oliver-Meseguer, J., Cabrero-Antonino, J. R., Dominguez, I., Leyva-Perez, A., & Corma, A. (2012). Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 107 at Room Temperature. Science, 338(6113), 1452-1455. doi:10.1126/science.1227813
Corma, A., Concepción, P., Boronat, M., Sabater, M. J., Navas, J., Yacaman, M. J., … Mayoral, A. (2013). Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nature Chemistry, 5(9), 775-781. doi:10.1038/nchem.1721
Boronat, M., Leyva-Pérez, A., & Corma, A. (2013). Theoretical and Experimental Insights into the Origin of the Catalytic Activity of Subnanometric Gold Clusters: Attempts to Predict Reactivity with Clusters and Nanoparticles of Gold. Accounts of Chemical Research, 47(3), 834-844. doi:10.1021/ar400068w
Yamazoe, S., Koyasu, K., & Tsukuda, T. (2013). Nonscalable Oxidation Catalysis of Gold Clusters. Accounts of Chemical Research, 47(3), 816-824. doi:10.1021/ar400209a
Bore, M. T., Pham, H. N., Switzer, E. E., Ward, T. L., Fukuoka, A., & Datye, A. K. (2005). The Role of Pore Size and Structure on the Thermal Stability of Gold Nanoparticles within Mesoporous Silica. The Journal of Physical Chemistry B, 109(7), 2873-2880. doi:10.1021/jp045917p
Otto, T., Zones, S. I., & Iglesia, E. (2016). Challenges and strategies in the encapsulation and stabilization of monodisperse Au clusters within zeolites. Journal of Catalysis, 339, 195-208. doi:10.1016/j.jcat.2016.04.015
Liu, L., Díaz, U., Arenal, R., Agostini, G., Concepción, P., & Corma, A. (2016). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials, 16(1), 132-138. doi:10.1038/nmat4757
Liu, L., Zakharov, D. N., Arenal, R., Concepcion, P., Stach, E. A., & Corma, A. (2018). Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nature Communications, 9(1). doi:10.1038/s41467-018-03012-6
Xue, Y., Li, X., Li, H., & Zhang, W. (2014). Quantifying thiol–gold interactions towards the efficient strength control. Nature Communications, 5(1). doi:10.1038/ncomms5348
Pensa, E., Cortés, E., Corthey, G., Carro, P., Vericat, C., Fonticelli, M. H., … Salvarezza, R. C. (2012). The Chemistry of the Sulfur–Gold Interface: In Search of a Unified Model. Accounts of Chemical Research, 45(8), 1183-1192. doi:10.1021/ar200260p
Shivhare, A., Chevrier, D. M., Purves, R. W., & Scott, R. W. J. (2013). Following the Thermal Activation of Au25(SR)18 Clusters for Catalysis by X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C, 117(39), 20007-20016. doi:10.1021/jp4063687
Miller, J. T., Kropf, A. J., Zha, Y., Regalbuto, J. R., Delannoy, L., Louis, C., … van Bokhoven, J. A. (2006). The effect of gold particle size on AuAu bond length and reactivity toward oxygen in supported catalysts. Journal of Catalysis, 240(2), 222-234. doi:10.1016/j.jcat.2006.04.004
Zhu, M., Aikens, C. M., Hollander, F. J., Schatz, G. C., & Jin, R. (2008). Correlating the Crystal Structure of A Thiol-Protected Au25Cluster and Optical Properties. Journal of the American Chemical Society, 130(18), 5883-5885. doi:10.1021/ja801173r
I. Hermans , Liquid Phase Aerobic Oxidation Catalysis-Industrial Applications and Academic Perspectives , ed. S. Stahl and P. Alsters , 2015
Hereijgers, B. P. C., & Weckhuysen, B. M. (2010). Aerobic oxidation of cyclohexane by gold-based catalysts: New mechanistic insight by thorough product analysis. Journal of Catalysis, 270(1), 16-25. doi:10.1016/j.jcat.2009.12.003
Hermans, I., Jacobs, P. A., & Peeters, J. (2006). To the Core of Autocatalysis in Cyclohexane Autoxidation. Chemistry - A European Journal, 12(16), 4229-4240. doi:10.1002/chem.200600189
Conte, M., Liu, X., Murphy, D. M., Whiston, K., & Hutchings, G. J. (2012). Cyclohexane oxidation using Au/MgO: an investigation of the reaction mechanism. Physical Chemistry Chemical Physics, 14(47), 16279. doi:10.1039/c2cp43363j
Qian, L., Wang, Z., Beletskiy, E. V., Liu, J., dos Santos, H. J., Li, T., … Kung, H. H. (2017). Stable and solubilized active Au atom clusters for selective epoxidation of cis-cyclooctene with molecular oxygen. Nature Communications, 8(1). doi:10.1038/ncomms14881
[-]