- -

Nanolayered cobalt-molybdenum sulphides (Co-Mo-S) catalyse borrowing hydrogen C-S bond formation reactions of thiols or H2S with alcohols

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nanolayered cobalt-molybdenum sulphides (Co-Mo-S) catalyse borrowing hydrogen C-S bond formation reactions of thiols or H2S with alcohols

Mostrar el registro completo del ítem

Sorribes-Terrés, I.; Corma Canós, A. (2019). Nanolayered cobalt-molybdenum sulphides (Co-Mo-S) catalyse borrowing hydrogen C-S bond formation reactions of thiols or H2S with alcohols. Chemical Science. 10(10):3130-3142. https://doi.org/10.1039/c8sc05782f

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/155013

Ficheros en el ítem

Metadatos del ítem

Título: Nanolayered cobalt-molybdenum sulphides (Co-Mo-S) catalyse borrowing hydrogen C-S bond formation reactions of thiols or H2S with alcohols
Autor: Sorribes-Terrés, Iván Corma Canós, Avelino
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Nanolayered cobalt-molybdenum sulphide (Co-Mo-S) materials have been established as excellent catalysts for C-S bond construction. These catalysts allow for the preparation of a broad range of thioethers in good to ...[+]
Derechos de uso: Reconocimiento - No comercial (by-nc)
Fuente:
Chemical Science. (issn: 2041-6520 )
DOI: 10.1039/c8sc05782f
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c8sc05782f
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Agradecimientos:
Financial support by the Spanish Government-MINECO through the program "Severo Ochoa" (SEV-2016-0683) is gratefully acknowledged. I. S. also acknowledges the Vice-Rectorate for Research, Innovation and Transfer of the ...[+]
Tipo: Artículo

References

E. Block , Reactions of Organosulfur Compounds , Academic Press , New York , 1978

M. E. Peach , in The Chemistry of the Thiol Group , ed. S. Patai , John Wiley & Sons , London , 1979 , pp. 721–723

F. Bernardi , I. G.Csizmadia and A.Mangini , Organic Sulfur Chemistry. Theoretical and Experimental Advances , Elsevier , Amsterdam , 1985 [+]
E. Block , Reactions of Organosulfur Compounds , Academic Press , New York , 1978

M. E. Peach , in The Chemistry of the Thiol Group , ed. S. Patai , John Wiley & Sons , London , 1979 , pp. 721–723

F. Bernardi , I. G.Csizmadia and A.Mangini , Organic Sulfur Chemistry. Theoretical and Experimental Advances , Elsevier , Amsterdam , 1985

R. J. Cremlyn , An Introduction to Organosulfur Chemistry , John Wiley & Sons , New York , 1996

Kondo, T., & Mitsudo, T. (2000). Metal-Catalyzed Carbon−Sulfur Bond Formation. Chemical Reviews, 100(8), 3205-3220. doi:10.1021/cr9902749

Liu, H., & Jiang, X. (2013). Transfer of Sulfur: From Simple to Diverse. Chemistry - An Asian Journal, 8(11), 2546-2563. doi:10.1002/asia.201300636

Artico, M., Silvestri, R., Pagnozzi, E., Bruno, B., Novellino, E., Greco, G., … La Colla, P. (2000). Structure-Based Design, Synthesis, and Biological Evaluation of Novel Pyrrolyl Aryl Sulfones:  HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors Active at Nanomolar Concentrations. Journal of Medicinal Chemistry, 43(9), 1886-1891. doi:10.1021/jm9901125

Sun, Z.-Y., Botros, E., Su, A.-D., Kim, Y., Wang, E., Baturay, N. Z., & Kwon, C.-H. (2000). Sulfoxide-Containing Aromatic Nitrogen Mustards as Hypoxia-Directed Bioreductive Cytotoxins. Journal of Medicinal Chemistry, 43(22), 4160-4168. doi:10.1021/jm9904957

Wang, Y., Chackalamannil, S., Chang, W., Greenlee, W., Ruperto, V., Duffy, R. A., … Lachowicz, J. E. (2001). Design and synthesis of ether analogues as potent and selective M2 muscarinic receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 11(7), 891-894. doi:10.1016/s0960-894x(01)00100-7

Clader, J. W., Billard, W., Binch, H., Chen, L.-Y., Crosby, G., Duffy, R. A., … Greenlee, W. J. (2004). Muscarinic M2 antagonists: anthranilamide derivatives with exceptional selectivity and in vivo activity. Bioorganic & Medicinal Chemistry, 12(2), 319-326. doi:10.1016/j.bmc.2003.11.005

Kharasch, N., Potempa, S. J., & Wehrmeister, H. L. (1946). The Sulfenic Acids and their Derivatives. Chemical Reviews, 39(2), 269-332. doi:10.1021/cr60123a004

S. Patai , The Chemistry of the Functional Groups – The Chemistry of the Thiol Group , Wiley , London , 1974

Herriott, A. W., & Picker, D. (1975). Phase transfer catalysis. Evaluation of catalysis. Journal of the American Chemical Society, 97(9), 2345-2349. doi:10.1021/ja00842a006

SULFIDE SYNTHESIS IN PREPARATION OF DIALKYL AND ALKYL ARYL SULFIDES: NEOPENTYL PHENYL SULFIDE. (1978). Organic Syntheses, 58, 143. doi:10.15227/orgsyn.058.0143

Boscato, J. F., Catala, J. M., Franta, E., & Brossas, J. (1980). Action of elementary sulfur onto carbanions : a new route to dialkylpolysulfides. Tetrahedron Letters, 21(16), 1519-1520. doi:10.1016/s0040-4039(00)92762-x

Kosugi, M., Ogata, T., Terada, M., Sano, H., & Migita, T. (1985). Palladium-catalyzed Reaction of Stannyl Sulfide with Aryl Bromide. Preparation of Aryl Sulfide. Bulletin of the Chemical Society of Japan, 58(12), 3657-3658. doi:10.1246/bcsj.58.3657

Hundscheid, F. J. A., Tandon, V. K., Rouwette, P. H. F. M., & van Leusen, A. M. (1987). Synthesis of chiral sulfonylmethyl isocyanides, and comparison of their propensities in asymmetric induction reactions with acetophenones1. Tetrahedron, 43(21), 5073-5088. doi:10.1016/s0040-4020(01)87684-5

Harpp, D. N., & Gingras, M. (1988). Organosulfur chemistry. Part 55. Fluorodestannylation. A powerful technique to liberate anions of oxygen, sulfur, selenium, and carbon. Journal of the American Chemical Society, 110(23), 7737-7745. doi:10.1021/ja00231a025

Gingras, M., Chan, T. H., & Harpp, D. N. (1990). New methodologies: fluorodemetalation of organogermanium, -tin, and -lead compounds. Applications with organometallic sulfides to produce highly active anions and spectroscopic evidence for pentavalent intermediates in substitution at tin. The Journal of Organic Chemistry, 55(7), 2078-2090. doi:10.1021/jo00294a021

Li, C.-J., & Harpp, D. N. (1992). A convenient preparation of arylthiostannanes. Tetrahedron Letters, 33(48), 7293-7294. doi:10.1016/s0040-4039(00)60169-7

Yin, J., & Pidgeon, C. (1997). A simple and efficient method for preparation of unsymmetrical sulfides. Tetrahedron Letters, 38(34), 5953-5954. doi:10.1016/s0040-4039(97)01352-x

Malmström, J., Gupta, V., & Engman, L. (1998). Novel Antioxidants:  Unexpected Rearrangements in the Radical Cyclization Approach to 2,3-Dihydrobenzo[b]thiophene-5-ol Derivatives. The Journal of Organic Chemistry, 63(10), 3318-3323. doi:10.1021/jo972087l

Ichiishi, N., Malapit, C. A., Woźniak, Ł., & Sanford, M. S. (2017). Palladium- and Nickel-Catalyzed Decarbonylative C–S Coupling to Convert Thioesters to Thioethers. Organic Letters, 20(1), 44-47. doi:10.1021/acs.orglett.7b03305

Shen, C., Zhang, P., Sun, Q., Bai, S., Hor, T. S. A., & Liu, X. (2015). Recent advances in C–S bond formation via C–H bond functionalization and decarboxylation. Chemical Society Reviews, 44(1), 291-314. doi:10.1039/c4cs00239c

Qiao, Z., & Jiang, X. (2017). Recent developments in sulfur–carbon bond formation reaction involving thiosulfates. Organic & Biomolecular Chemistry, 15(9), 1942-1946. doi:10.1039/c6ob02833k

Page, P. C. B., Klair, S. S., Brown, M. P., Harding, M. M., Smith, C. S., Maginn, S. J., & Mulley, S. (1988). Carbon—sulphur bond formation catalysed by bis(diphenylphosphino)-methane complexes of platinum (II). Tetrahedron Letters, 29(35), 4477-4480. doi:10.1016/s0040-4039(00)80527-4

Beletskaya, I. P., & Cheprakov, A. V. (2004). Copper in cross-coupling reactions. Coordination Chemistry Reviews, 248(21-24), 2337-2364. doi:10.1016/j.ccr.2004.09.014

Fernández-Rodríguez, M. A., Shen, Q., & Hartwig, J. F. (2006). A General and Long-Lived Catalyst for the Palladium-Catalyzed Coupling of Aryl Halides with Thiols. Journal of the American Chemical Society, 128(7), 2180-2181. doi:10.1021/ja0580340

Arisawa, M., Suzuki, T., Ishikawa, T., & Yamaguchi, M. (2008). Rhodium-Catalyzed Substitution Reaction of Aryl Fluorides with Disulfides:p-Orientation in the Polyarylthiolation of Polyfluorobenzenes. Journal of the American Chemical Society, 130(37), 12214-12215. doi:10.1021/ja8049996

Correa, A., Carril, M., & Bolm, C. (2008). Iron-Catalyzed S-Arylation of Thiols with Aryl Iodides. Angewandte Chemie International Edition, 47(15), 2880-2883. doi:10.1002/anie.200705668

Wu, J.-R., Lin, C.-H., & Lee, C.-F. (2009). Iron-catalyzed thioetherification of thiols with aryl iodides. Chemical Communications, (29), 4450. doi:10.1039/b907362k

Fernández-Rodríguez, M. A., & Hartwig, J. F. (2010). One-Pot Synthesis of Unsymmetrical Diaryl Thioethers by Palladium-Catalyzed Coupling of Two Aryl Bromides and a Thiol Surrogate. Chemistry - A European Journal, 16(8), 2355-2359. doi:10.1002/chem.200902313

Beletskaya, I. P., & Ananikov, V. P. (2011). Transition-Metal-Catalyzed C−S, C−Se, and C−Te Bond Formation via Cross-Coupling and Atom-Economic Addition Reactions. Chemical Reviews, 111(3), 1596-1636. doi:10.1021/cr100347k

Sayah, M., & Organ, M. G. (2011). Carbon-Sulfur Bond Formation of Challenging Substrates at Low Temperature by Using Pd-PEPPSI-IPent. Chemistry - A European Journal, 17(42), 11719-11722. doi:10.1002/chem.201102158

Lan, M.-T., Wu, W.-Y., Huang, S.-H., Luo, K.-L., & Tsai, F.-Y. (2011). Reusable and efficient CoCl2·6H2O/cationic 2,2’-bipyridyl system-catalyzed S-arylation of aryl halides with thiols in water under air. RSC Advances, 1(9), 1751. doi:10.1039/c1ra00406a

Cabrero-Antonino, J. R., García, T., Rubio-Marqués, P., Vidal-Moya, J. A., Leyva-Pérez, A., Al-Deyab, S. S., … Corma, A. (2011). Synthesis of Organic−Inorganic Hybrid Solids with Copper Complex Framework and Their Catalytic Activity for the S-Arylation and the Azide−Alkyne Cycloaddition Reactions. ACS Catalysis, 1(2), 147-158. doi:10.1021/cs100086y

Baig, R. B. N., & Varma, R. S. (2012). A highly active and magnetically retrievable nanoferrite–DOPA–copper catalyst for the coupling of thiophenols with aryl halides. Chemical Communications, 48(20), 2582. doi:10.1039/c2cc17283f

Liao, Y., Jiang, P., Chen, S., Qi, H., & Deng, G.-J. (2013). Iodine-catalyzed efficient 2-arylsulfanylphenol formation from thiols and cyclohexanones. Green Chemistry, 15(12), 3302. doi:10.1039/c3gc41671b

Kamal, A., Srinivasulu, V., Murty, J. N. S. R. C., Shankaraiah, N., Nagesh, N., Srinivasa Reddy, T., & Subba Rao, A. V. (2013). Copper Oxide Nanoparticles Supported on Graphene Oxide- Catalyzed S-Arylation: An Efficient and Ligand-Free Synthesis of Aryl Sulfides. Advanced Synthesis & Catalysis, 355(11-12), 2297-2307. doi:10.1002/adsc.201300416

Timpa, S. D., Pell, C. J., & Ozerov, O. V. (2014). A Well-Defined (POCOP)Rh Catalyst for the Coupling of Aryl Halides with Thiols. Journal of the American Chemical Society, 136(42), 14772-14779. doi:10.1021/ja505576g

Lee, C.-F., Liu, Y.-C., & Badsara, S. S. (2014). Transition-Metal-Catalyzed CS Bond Coupling Reaction. Chemistry - An Asian Journal, 9(3), 706-722. doi:10.1002/asia.201301500

Thomas, A. M., Asha, S., Sindhu, K. S., & Anilkumar, G. (2015). A general and inexpensive protocol for the Cu-catalyzed C–S cross-coupling reaction between aryl halides and thiols. Tetrahedron Letters, 56(47), 6560-6564. doi:10.1016/j.tetlet.2015.10.014

Oderinde, M. S., Frenette, M., Robbins, D. W., Aquila, B., & Johannes, J. W. (2016). Photoredox Mediated Nickel Catalyzed Cross-Coupling of Thiols With Aryl and Heteroaryl Iodides via Thiyl Radicals. Journal of the American Chemical Society, 138(6), 1760-1763. doi:10.1021/jacs.5b11244

Kanemoto, K., Sugimura, Y., Shimizu, S., Yoshida, S., & Hosoya, T. (2017). Rhodium-catalyzed odorless synthesis of diaryl sulfides from borylarenes and S-aryl thiosulfonates. Chemical Communications, 53(77), 10640-10643. doi:10.1039/c7cc05868c

Chen, C.-W., Chen, Y.-L., Reddy, D. M., Du, K., Li, C.-E., Shih, B.-H., … Lee, C.-F. (2017). CuI/Oxalic Diamide-Catalyzed Cross-Coupling of Thiols with Aryl Bromides and Chlorides. Chemistry - A European Journal, 23(42), 10087-10091. doi:10.1002/chem.201701671

Lian, Z., Bhawal, B. N., Yu, P., & Morandi, B. (2017). Palladium-catalyzed carbon-sulfur or carbon-phosphorus bond metathesis by reversible arylation. Science, 356(6342), 1059-1063. doi:10.1126/science.aam9041

Fang, Y., Rogge, T., Ackermann, L., Wang, S.-Y., & Ji, S.-J. (2018). Nickel-catalyzed reductive thiolation and selenylation of unactivated alkyl bromides. Nature Communications, 9(1). doi:10.1038/s41467-018-04646-2

Jones, K. D., Power, D. J., Bierer, D., Gericke, K. M., & Stewart, S. G. (2017). Nickel Phosphite/Phosphine-Catalyzed C–S Cross-Coupling of Aryl Chlorides and Thiols. Organic Letters, 20(1), 208-211. doi:10.1021/acs.orglett.7b03560

Kumar, P., Pandey, R. K., & Hegde, V. R. (1999). Anti-Markovnikov Addition of Thiols Across Double Bonds Catalyzed by H-Rho-Zeolite. Synlett, 1999(12), 1921-1922. doi:10.1055/s-1999-2976

Kanagasabapathy, S., Sudalai, A., & Benicewicz, B. C. (2001). Montmorillonite K 10-catalyzed regioselective addition of thiols and thiobenzoic acids onto olefins: an efficient synthesis of dithiocarboxylic esters. Tetrahedron Letters, 42(23), 3791-3794. doi:10.1016/s0040-4039(01)00570-6

Morita, N., & Krause, N. (2006). The First Gold-Catalyzed CS Bond Formation: Cycloisomerization of α-Thioallenes to 2,5-Dihydrothiophenes. Angewandte Chemie International Edition, 45(12), 1897-1899. doi:10.1002/anie.200503846

Kawatsura, M., Komatsu, Y., Yamamoto, M., Hayase, S., & Itoh, T. (2007). Enantioselective C–S bond formation by iron/Pybox catalyzed Michael addition of thiols to (E)-3-crotonoyloxazolidin-2-one. Tetrahedron Letters, 48(37), 6480-6482. doi:10.1016/j.tetlet.2007.07.053

Banerjee, S., Das, J., Alvarez, R. P., & Santra, S. (2010). Silicananoparticles as a reusable catalyst: a straightforward route for the synthesis of thioethers, thioesters, vinyl thioethers and thio-Michael adducts under neutral reaction conditions. New J. Chem., 34(2), 302-306. doi:10.1039/b9nj00399a

Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2012). Iron-Catalysed Markovnikov Hydrothiolation of Styrenes. Advanced Synthesis & Catalysis, 354(4), 678-687. doi:10.1002/adsc.201100731

Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2013). Iron(III) Triflimide as a Catalytic Substitute for Gold(I) in Hydroaddition Reactions to Unsaturated Carbon-Carbon Bonds. Chemistry - A European Journal, 19(26), 8627-8633. doi:10.1002/chem.201300386

Zeng, X. (2013). Recent Advances in Catalytic Sequential Reactions Involving Hydroelement Addition to Carbon–Carbon Multiple Bonds. Chemical Reviews, 113(8), 6864-6900. doi:10.1021/cr400082n

Kuciński, K., Pawluć, P., & Hreczycho, G. (2015). Scandium(III) Triflate-Catalyzedanti-Markovnikov Hydrothiolation of Functionalized Olefins. Advanced Synthesis & Catalysis, 357(18), 3936-3942. doi:10.1002/adsc.201500720

Kumar, R., Saima, Shard, A., Andhare, N. H., Richa, & Sinha, A. K. (2014). Thiol-Ene «Click» Reaction Triggered by Neutral Ionic Liquid: The «Ambiphilic» Character of [hmim]Br in the Regioselective Nucleophilic Hydrothiolation. Angewandte Chemie International Edition, 54(3), 828-832. doi:10.1002/anie.201408721

Pérez, M., Mahdi, T., Hounjet, L. J., & Stephan, D. W. (2015). Electrophilic phosphonium cations catalyze hydroarylation and hydrothiolation of olefins. Chemical Communications, 51(56), 11301-11304. doi:10.1039/c5cc03572d

Palacios, L., Di Giuseppe, A., Artigas, M. J., Polo, V., Lahoz, F. J., Castarlenas, R., … Oro, L. A. (2016). Mechanistic insight into the pyridine enhanced α-selectivity in alkyne hydrothiolation catalysed by quinolinolate–rhodium(i)–N-heterocyclic carbene complexes. Catalysis Science & Technology, 6(24), 8548-8561. doi:10.1039/c6cy01884j

Kennemur, J. L., Kortman, G. D., & Hull, K. L. (2016). Rhodium-Catalyzed Regiodivergent Hydrothiolation of Allyl Amines and Imines. Journal of the American Chemical Society, 138(36), 11914-11919. doi:10.1021/jacs.6b07142

Palacios, L., Meheut, Y., Galiana-Cameo, M., Artigas, M. J., Di Giuseppe, A., Lahoz, F. J., … Oro, L. A. (2017). Design of Highly Selective Alkyne Hydrothiolation RhI-NHC Catalysts: Carbonyl-Triggered Nonoxidative Mechanism. Organometallics, 36(11), 2198-2207. doi:10.1021/acs.organomet.7b00251

Cabrero-Antonino, J. R., Tejeda-Serrano, M., Quesada, M., Vidal-Moya, J. A., Leyva-Pérez, A., & Corma, A. (2017). Bimetallic nanosized solids with acid and redox properties for catalytic activation of C–C and C–H bonds. Chemical Science, 8(1), 689-696. doi:10.1039/c6sc03335k

Martin, M. T., Thomas, A. M., & York, D. G. (2002). Direct synthesis of thioethers from sulfonyl chlorides and activated alcohols. Tetrahedron Letters, 43(12), 2145-2147. doi:10.1016/s0040-4039(02)00218-6

Saxena, A., Kumar, A., & Mozumdar, S. (2007). Ni-nanoparticles: An efficient green catalyst for chemo-selective oxidative coupling of thiols. Journal of Molecular Catalysis A: Chemical, 269(1-2), 35-40. doi:10.1016/j.molcata.2006.12.042

Bandgar, B. P., Gawande, S. S., & Muley, D. B. (2010). Silica supported perchloric acid (HClO4-SiO2): a green, reusable, and highly efficient heterogeneous catalyst for the synthesis of thioethers under solvent-free conditions at room temperature. Green Chemistry Letters and Reviews, 3(1), 49-54. doi:10.1080/17518250903447118

Bahrami, K., Khodaei, M., & Khodadoustan, N. (2011). TAPC-Catalyzed Synthesis of Thioethers from Thiols and Alcohols. Synlett, 2011(15), 2206-2210. doi:10.1055/s-0030-1261206

Basu, B., Kundu, S., & Sengupta, D. (2013). Graphene oxide as a carbocatalyst: the first example of a one-pot sequential dehydration–hydrothiolation of secondary aryl alcohols. RSC Advances, 3(44), 22130. doi:10.1039/c3ra44712j

Hikawa, H., Toyomoto, M., Kikkawa, S., & Azumaya, I. (2015). Direct substitution of benzylic alcohols with electron-deficient benzenethiols via π-benzylpalladium(ii) in water. Organic & Biomolecular Chemistry, 13(47), 11459-11465. doi:10.1039/c5ob01717c

Hikawa, H., Machino, Y., Toyomoto, M., Kikkawa, S., & Azumaya, I. (2016). Cationic palladium(ii)-catalyzed dehydrative nucleophilic substitutions of benzhydryl alcohols with electron-deficient benzenethiols in water. Organic & Biomolecular Chemistry, 14(29), 7038-7045. doi:10.1039/c6ob01140c

Santoro, F., Mariani, M., Zaccheria, F., Psaro, R., & Ravasio, N. (2016). Selective synthesis of thioethers in the presence of a transition-metal-free solid Lewis acid. Beilstein Journal of Organic Chemistry, 12, 2627-2635. doi:10.3762/bjoc.12.259

Hamid, M. H. S. A., Slatford, P. A., & Williams, J. M. J. (2007). Borrowing Hydrogen in the Activation of Alcohols. Advanced Synthesis & Catalysis, 349(10), 1555-1575. doi:10.1002/adsc.200600638

Nixon, T. D., Whittlesey, M. K., & Williams, J. M. J. (2009). Transition metal catalysed reactions of alcohols using borrowing hydrogen methodology. Dalton Trans., (5), 753-762. doi:10.1039/b813383b

Hollmann, D. (2014). Advances in Asymmetric Borrowing Hydrogen Catalysis. ChemSusChem, 7(9), 2411-2413. doi:10.1002/cssc.201402320

Muzart, J. (2015). Pd-Catalyzed Hydrogen-Transfer Reactions from Alcohols to C=C, C=O, and C=N Bonds. European Journal of Organic Chemistry, 2015(26), 5693-5707. doi:10.1002/ejoc.201500401

Corma, A., Navas, J., & Sabater, M. J. (2018). Advances in One-Pot Synthesis through Borrowing Hydrogen Catalysis. Chemical Reviews, 118(4), 1410-1459. doi:10.1021/acs.chemrev.7b00340

Guillena, G., Ramón, D. J., & Yus, M. (2009). Hydrogen Autotransfer in theN-Alkylation of Amines and Related Compounds using Alcohols and Amines as Electrophiles. Chemical Reviews, 110(3), 1611-1641. doi:10.1021/cr9002159

Bähn, S., Imm, S., Neubert, L., Zhang, M., Neumann, H., & Beller, M. (2011). The Catalytic Amination of Alcohols. ChemCatChem, 3(12), 1853-1864. doi:10.1002/cctc.201100255

Yang, Q., Wang, Q., & Yu, Z. (2015). Substitution of alcohols by N-nucleophiles via transition metal-catalyzed dehydrogenation. Chemical Society Reviews, 44(8), 2305-2329. doi:10.1039/c4cs00496e

Ma, X., Su, C., & Xu, Q. (2016). N-Alkylation by Hydrogen Autotransfer Reactions. Topics in Current Chemistry, 374(3). doi:10.1007/s41061-016-0027-1

Guillena, G., Ramón, D. J., & Yus, M. (2007). Alcohols as Electrophiles in CC Bond-Forming Reactions: The Hydrogen Autotransfer Process. Angewandte Chemie International Edition, 46(14), 2358-2364. doi:10.1002/anie.200603794

Huang, F., Liu, Z., & Yu, Z. (2015). C-Alkylation of Ketones and Related Compounds by Alcohols: Transition-Metal-Catalyzed Dehydrogenation. Angewandte Chemie International Edition, 55(3), 862-875. doi:10.1002/anie.201507521

Obora, Y. (2016). C-Alkylation by Hydrogen Autotransfer Reactions. Topics in Current Chemistry, 374(2). doi:10.1007/s41061-016-0012-8

Corma, A., Navas, J., Ródenas, T., & Sabater, M. J. (2013). One‐Pot Palladium‐Catalyzed Borrowing Hydrogen Synthesis of Thioethers. Chemistry – A European Journal, 19(51), 17464-17471. doi:10.1002/chem.201302226

Glass, R. S. (1976). Reductive Sulfidation. Conversion of Aldehydes into Sulfides. Synthetic Communications, 6(1), 47-51. doi:10.1080/00397917608062132

Kikugawa, Y. (1981). A NEW SYNTHESIS OF SULFIDES FROM THIOLS AND ALDEHYDES OR KETONES WITH PYRIDINE-BORANE IN TRIFLUOROACETIC ACID. Chemistry Letters, 10(8), 1157-1158. doi:10.1246/cl.1981.1157

Olah, G. A., Wang, Q., Trivedi, N. J., & Surya Prakash, G. K. (1992). Boron Trifluoride Monohydrate Catalyzed One-Flask Preparation of Sulfides from Carbonyl Compounds with Thiols and Triethylsilane. Synthesis, 1992(05), 465-466. doi:10.1055/s-1992-26138

Olah, G. A., Wang, Q., Li, X., & Surya Prakash, G. K. (1993). Boron Trifluoride Monohydrate Catalyzed One-Flask 2,2,2-Trifluoro-1-(ethylthio)ethylation of Aromatics with Trifluoroacetaldehyde Hydrate and Ethanethiol1. Synlett, 1993(01), 32-34. doi:10.1055/s-1993-22336

Liu, L., Concepción, P., & Corma, A. (2016). Non-noble metal catalysts for hydrogenation: A facile method for preparing Co nanoparticles covered with thin layered carbon. Journal of Catalysis, 340, 1-9. doi:10.1016/j.jcat.2016.04.006

Liu, L., Gao, F., Concepción, P., & Corma, A. (2017). A new strategy to transform mono and bimetallic non-noble metal nanoparticles into highly active and chemoselective hydrogenation catalysts. Journal of Catalysis, 350, 218-225. doi:10.1016/j.jcat.2017.03.014

Millán, R., Liu, L., Boronat, M., & Corma, A. (2018). A new molecular pathway allows the chemoselective reduction of nitroaromatics on non-noble metal catalysts. Journal of Catalysis, 364, 19-30. doi:10.1016/j.jcat.2018.05.004

Filonenko, G. A., van Putten, R., Hensen, E. J. M., & Pidko, E. A. (2018). Catalytic (de)hydrogenation promoted by non-precious metals – Co, Fe and Mn: recent advances in an emerging field. Chemical Society Reviews, 47(4), 1459-1483. doi:10.1039/c7cs00334j

Taguchi, K., Nakagawa, H., Hirabayashi, T., Sakaguchi, S., & Ishii, Y. (2004). An Efficient Direct α-Alkylation of Ketones with Primary Alcohols Catalyzed by [Ir(cod)Cl]2/PPh3/KOH System without Solvent. Journal of the American Chemical Society, 126(1), 72-73. doi:10.1021/ja037552c

Burling, S., Paine, B. M., Nama, D., Brown, V. S., Mahon, M. F., Prior, T. J., … Williams, J. M. J. (2007). CH Activation Reactions of Ruthenium N-Heterocyclic Carbene Complexes:  Application in a Catalytic Tandem Reaction Involving CC Bond Formation from Alcohols. Journal of the American Chemical Society, 129(7), 1987-1995. doi:10.1021/ja065790c

Iuchi, Y., Obora, Y., & Ishii, Y. (2010). Iridium-Catalyzed α-Alkylation of Acetates with Primary Alcohols and Diols. Journal of the American Chemical Society, 132(8), 2536-2537. doi:10.1021/ja9106989

Blank, B., & Kempe, R. (2010). Catalytic Alkylation of Methyl-N-Heteroaromatics with Alcohols. Journal of the American Chemical Society, 132(3), 924-925. doi:10.1021/ja9095413

Obora, Y., Anno, Y., Okamoto, R., Matsu-ura, T., & Ishii, Y. (2011). Iridium-Catalyzed Reactions of ω-Arylalkanols to α,ω-Diarylalkanes. Angewandte Chemie International Edition, 50(37), 8618-8622. doi:10.1002/anie.201104452

Peña-López, M., Neumann, H., & Beller, M. (2015). Ruthenium pincer-catalyzed synthesis of substituted γ-butyrolactones using hydrogen autotransfer methodology. Chemical Communications, 51(66), 13082-13085. doi:10.1039/c5cc01708d

Guo, L., Ma, X., Fang, H., Jia, X., & Huang, Z. (2015). A General and Mild Catalytic α-Alkylation of Unactivated Esters Using Alcohols. Angewandte Chemie International Edition, 54(13), 4023-4027. doi:10.1002/anie.201410293

Shen, D., Poole, D. L., Shotton, C. C., Kornahrens, A. F., Healy, M. P., & Donohoe, T. J. (2014). Hydrogen-Borrowing and Interrupted-Hydrogen-Borrowing Reactions of Ketones and Methanol Catalyzed by Iridium. Angewandte Chemie International Edition, 54(5), 1642-1645. doi:10.1002/anie.201410391

Zou, Q., Wang, C., Smith, J., Xue, D., & Xiao, J. (2015). Alkylation of Amines with Alcohols and Amines by a Single Catalyst under Mild Conditions. Chemistry - A European Journal, 21(27), 9656-9661. doi:10.1002/chem.201501109

Peña-López, M., Neumann, H., & Beller, M. (2016). (Enantio)selective Hydrogen Autotransfer: Ruthenium-Catalyzed Synthesis of Oxazolidin-2-ones from Urea and Diols. Angewandte Chemie International Edition, 55(27), 7826-7830. doi:10.1002/anie.201600698

Wang, Q., Wu, K., & Yu, Z. (2016). Ruthenium(III)-Catalyzed β-Alkylation of Secondary Alcohols with Primary Alcohols. Organometallics, 35(9), 1251-1256. doi:10.1021/acs.organomet.6b00130

Said Stålsmeden, A., Belmonte Vázquez, J. L., van Weerdenburg, K., Rae, R., Norrby, P.-O., & Kann, N. (2016). Glycerol Upgrading via Hydrogen Borrowing: Direct Ruthenium-Catalyzed Amination of the Glycerol Derivative Solketal. ACS Sustainable Chemistry & Engineering, 4(10), 5730-5736. doi:10.1021/acssuschemeng.6b01659

Yang, J., Liu, X., Meng, D.-L., Chen, H.-Y., Zong, Z.-H., Feng, T.-T., & Sun, K. (2012). Efficient Iron-Catalyzed Direct β-Alkylation of Secondary Alcohols with Primary Alcohols. Advanced Synthesis & Catalysis, 354(2-3), 328-334. doi:10.1002/adsc.201000907

Bala, M., Verma, P. K., Sharma, U., Kumar, N., & Singh, B. (2013). Iron phthalocyanine as an efficient and versatile catalyst for N-alkylation of heterocyclic amines with alcohols: one-pot synthesis of 2-substituted benzimidazoles, benzothiazoles and benzoxazoles. Green Chemistry, 15(6), 1687. doi:10.1039/c3gc40137e

Yan, T., Feringa, B. L., & Barta, K. (2014). Iron catalysed direct alkylation of amines with alcohols. Nature Communications, 5(1). doi:10.1038/ncomms6602

Elangovan, S., Sortais, J.-B., Beller, M., & Darcel, C. (2015). Iron-Catalyzed α-Alkylation of Ketones with Alcohols. Angewandte Chemie International Edition, 54(48), 14483-14486. doi:10.1002/anie.201506698

Pan, H.-J., Ng, T. W., & Zhao, Y. (2015). Iron-catalyzed amination of alcohols assisted by Lewis acid. Chemical Communications, 51(59), 11907-11910. doi:10.1039/c5cc03399c

Mastalir, M., Stöger, B., Pittenauer, E., Puchberger, M., Allmaier, G., & Kirchner, K. (2016). Air Stable Iron(II) PNP Pincer Complexes as Efficient Catalysts for the Selective Alkylation of Amines with Alcohols. Advanced Synthesis & Catalysis, 358(23), 3824-3831. doi:10.1002/adsc.201600689

Peña-López, M., Neumann, H., & Beller, M. (2016). Iron-Catalyzed Reaction of Urea with Alcohols and Amines: A Safe Alternative for the Synthesis of Primary Carbamates. ChemSusChem, 9(16), 2233-2238. doi:10.1002/cssc.201600587

Yan, T., Feringa, B. L., & Barta, K. (2015). Benzylamines via Iron-Catalyzed Direct Amination of Benzyl Alcohols. ACS Catalysis, 6(1), 381-388. doi:10.1021/acscatal.5b02160

Polidano, K., Allen, B. D. W., Williams, J. M. J., & Morrill, L. C. (2018). Iron-Catalyzed Methylation Using the Borrowing Hydrogen Approach. ACS Catalysis, 8(7), 6440-6445. doi:10.1021/acscatal.8b02158

Rösler, S., Ertl, M., Irrgang, T., & Kempe, R. (2015). Cobalt-Catalyzed Alkylation of Aromatic Amines by Alcohols. Angewandte Chemie International Edition, 54(50), 15046-15050. doi:10.1002/anie.201507955

Deibl, N., & Kempe, R. (2016). General and Mild Cobalt-Catalyzed C-Alkylation of Unactivated Amides and Esters with Alcohols. Journal of the American Chemical Society, 138(34), 10786-10789. doi:10.1021/jacs.6b06448

Yin, Z., Zeng, H., Wu, J., Zheng, S., & Zhang, G. (2016). Cobalt-Catalyzed Synthesis of Aromatic, Aliphatic, and Cyclic Secondary Amines via a «Hydrogen-Borrowing» Strategy. ACS Catalysis, 6(10), 6546-6550. doi:10.1021/acscatal.6b02218

Freitag, F., Irrgang, T., & Kempe, R. (2017). Cobalt-Catalyzed Alkylation of Secondary Alcohols with Primary Alcohols via Borrowing Hydrogen/Hydrogen Autotransfer. Chemistry - A European Journal, 23(50), 12110-12113. doi:10.1002/chem.201701211

Zhang, G., Wu, J., Zeng, H., Zhang, S., Yin, Z., & Zheng, S. (2017). Cobalt-Catalyzed α-Alkylation of Ketones with Primary Alcohols. Organic Letters, 19(5), 1080-1083. doi:10.1021/acs.orglett.7b00106

Liao, S., Yu, K., Li, Q., Tian, H., Zhang, Z., Yu, X., & Xu, Q. (2012). Copper-catalyzed C-alkylation of secondary alcohols and methyl ketones with alcohols employing the aerobic relay race methodology. Organic & Biomolecular Chemistry, 10(15), 2973. doi:10.1039/c1ob06739g

Elangovan, S., Neumann, J., Sortais, J.-B., Junge, K., Darcel, C., & Beller, M. (2016). Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes. Nature Communications, 7(1). doi:10.1038/ncomms12641

Mukherjee, A., Nerush, A., Leitus, G., Shimon, L. J. W., Ben David, Y., Espinosa Jalapa, N. A., & Milstein, D. (2016). Manganese-Catalyzed Environmentally Benign Dehydrogenative Coupling of Alcohols and Amines to Form Aldimines and H2: A Catalytic and Mechanistic Study. Journal of the American Chemical Society, 138(13), 4298-4301. doi:10.1021/jacs.5b13519

Peña-López, M., Piehl, P., Elangovan, S., Neumann, H., & Beller, M. (2016). Manganese-Catalyzed Hydrogen-Autotransfer C−C Bond Formation: α-Alkylation of Ketones with Primary Alcohols. Angewandte Chemie International Edition, 55(48), 14967-14971. doi:10.1002/anie.201607072

Bruneau-Voisine, A., Wang, D., Dorcet, V., Roisnel, T., Darcel, C., & Sortais, J.-B. (2017). Mono-N-methylation of anilines with methanol catalyzed by a manganese pincer-complex. Journal of Catalysis, 347, 57-62. doi:10.1016/j.jcat.2017.01.004

Deibl, N., & Kempe, R. (2017). Manganese‐Catalyzed Multicomponent Synthesis of Pyrimidines from Alcohols and Amidines. Angewandte Chemie International Edition, 56(6), 1663-1666. doi:10.1002/anie.201611318

Fu, S., Shao, Z., Wang, Y., & Liu, Q. (2017). Manganese-Catalyzed Upgrading of Ethanol into 1-Butanol. Journal of the American Chemical Society, 139(34), 11941-11948. doi:10.1021/jacs.7b05939

Neumann, J., Elangovan, S., Spannenberg, A., Junge, K., & Beller, M. (2017). Improved and General Manganese‐Catalyzed N‐Methylation of Aromatic Amines Using Methanol. Chemistry – A European Journal, 23(23), 5410-5413. doi:10.1002/chem.201605218

Barman, M. K., Waiba, S., & Maji, B. (2018). Manganese-Catalyzed Direct Olefination of Methyl-Substituted Heteroarenes with Primary Alcohols. Angewandte Chemie International Edition, 57(29), 9126-9130. doi:10.1002/anie.201804729

Das, U. K., Ben-David, Y., Diskin-Posner, Y., & Milstein, D. (2018). N-Substituted Hydrazones by Manganese-Catalyzed Coupling of Alcohols with Hydrazine: Borrowing Hydrogen and Acceptorless Dehydrogenation in One System. Angewandte Chemie International Edition, 57(8), 2179-2182. doi:10.1002/anie.201712593

Piehl, P., Peña-López, M., Frey, A., Neumann, H., & Beller, M. (2017). Hydrogen autotransfer and related dehydrogenative coupling reactions using a rhenium(i) pincer catalyst. Chemical Communications, 53(22), 3265-3268. doi:10.1039/c6cc09977g

Carlini, C., Macinai, A., Marchionna, M., Noviello, M., Galletti, A. M. R., & Sbrana, G. (2003). Selective synthesis of isobutanol by means of the Guerbet reaction. Journal of Molecular Catalysis A: Chemical, 206(1-2), 409-418. doi:10.1016/s1381-1169(03)00453-9

Alonso, F., Riente, P., & Yus, M. (2008). Alcohols for the α-Alkylation of Methyl Ketones and Indirect Aza-Wittig Reaction Promoted by Nickel Nanoparticles. European Journal of Organic Chemistry, 2008(29), 4908-4914. doi:10.1002/ejoc.200800729

Shimizu, K., Kanno, S., Kon, K., Hakim Siddiki, S. M. A., Tanaka, H., & Sakata, Y. (2014). N-alkylation of ammonia and amines with alcohols catalyzed by Ni-loaded CaSiO3. Catalysis Today, 232, 134-138. doi:10.1016/j.cattod.2013.09.002

Onyestyák, G., Novodárszki, G., Barthos, R., Klébert, S., Wellisch, Á. F., & Pilbáth, A. (2015). Acetone alkylation with ethanol over multifunctional catalysts by a borrowing hydrogen strategy. RSC Advances, 5(120), 99502-99509. doi:10.1039/c5ra17889d

Xu, J., Yue, H., Liu, S., Wang, H., Du, Y., Xu, C., … Liu, C. (2016). Cu–Ag/hydrotalcite catalysts for dehydrogenative cross-coupling of primary and secondary benzylic alcohols. RSC Advances, 6(29), 24164-24174. doi:10.1039/c5ra22542f

H. Topsøe , B. S.Clausen and F. E.Massoth , Hydrotreating Catalysis, Science and Technology , Springer-Verlag , Heidelberg , 1996

K. Toshiaki , I.Atsushi and Q.Weihua , Hydrodesulfurization and Hydrodenitrogenation: Chemistry and Engineering , Wiley-VCH , Tokyo , 1999

R. A. Sánchez-Delgado , Organometallic Modeling of the Hydrodesulfurization and Hydrodenitrogenation Reactions , Springer Netherlands, Kluwer , Dordrecht , 2002

Plantenga, F. L., Cerfontain, R., Eijsbouts, S., van Houtert, F., Anderson, G. H., Miseo, S., … Inoue, Y. (2003). 89 «Nebula»: A hydroprocessing catalyst with breakthrough activity. Studies in Surface Science and Catalysis, 407-410. doi:10.1016/s0167-2991(03)80246-x

Eijsbouts, S., Mayo, S. W., & Fujita, K. (2007). Unsupported transition metal sulfide catalysts: From fundamentals to industrial application. Applied Catalysis A: General, 322, 58-66. doi:10.1016/j.apcata.2007.01.008

Yoosuk, B., Song, C., Kim, J. H., Ngamcharussrivichai, C., & Prasassarakich, P. (2010). Effects of preparation conditions in hydrothermal synthesis of highly active unsupported NiMo sulfide catalysts for simultaneous hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. Catalysis Today, 149(1-2), 52-61. doi:10.1016/j.cattod.2009.05.001

Yoosuk, B., Tumnantong, D., & Prasassarakich, P. (2012). Amorphous unsupported Ni–Mo sulfide prepared by one step hydrothermal method for phenol hydrodeoxygenation. Fuel, 91(1), 246-252. doi:10.1016/j.fuel.2011.08.001

Wang, W., Zhang, K., Li, L., Wu, K., Liu, P., & Yang, Y. (2014). Synthesis of Highly Active Co–Mo–S Unsupported Catalysts by a One-Step Hydrothermal Method for p-Cresol Hydrodeoxygenation. Industrial & Engineering Chemistry Research, 53(49), 19001-19009. doi:10.1021/ie5032698

Itthibenchapong, V., Ratanatawanate, C., Oura, M., & Faungnawakij, K. (2015). A facile and low-cost synthesis of MoS2 for hydrodeoxygenation of phenol. Catalysis Communications, 68, 31-35. doi:10.1016/j.catcom.2015.04.024

Wang, W., Li, L., Wu, K., Zhu, G., Tan, S., Li, W., & Yang, Y. (2015). Hydrothermal synthesis of bimodal mesoporous MoS2 nanosheets and their hydrodeoxygenation properties. RSC Advances, 5(76), 61799-61807. doi:10.1039/c5ra09690a

Wang, W., Li, L., Wu, K., Zhang, K., Jie, J., & Yang, Y. (2015). Preparation of Ni–Mo–S catalysts by hydrothermal method and their hydrodeoxygenation properties. Applied Catalysis A: General, 495, 8-16. doi:10.1016/j.apcata.2015.01.041

Wang, W., Li, L., Tan, S., Wu, K., Zhu, G., Liu, Y., … Yang, Y. (2016). Preparation of NiS2//MoS2 catalysts by two-step hydrothermal method and their enhanced activity for hydrodeoxygenation of p-cresol. Fuel, 179, 1-9. doi:10.1016/j.fuel.2016.03.068

Wang, W., Wu, K., Li, L., Tan, S., Zhu, G., Li, W., … Yang, Y. (2016). Microwave-assisted hydrothermal synthesis of NiS and their promotional effect for the hydrodeoxygenation of p-cresol on MoS2. Catalysis Communications, 74, 60-64. doi:10.1016/j.catcom.2015.10.032

Wang, W., Zhu, G., Li, L., Tan, S., Wu, K., Zhang, X., & Yang, Y. (2016). Facile hydrothermal synthesis of flower-like Co–Mo–S catalysts and their high activities in the hydrodeoxygenation of p-cresol and hydrodesulfurization of benzothiophene. Fuel, 174, 1-8. doi:10.1016/j.fuel.2016.01.074

Sorribes, I., Liu, L., & Corma, A. (2017). Nanolayered Co–Mo–S Catalysts for the Chemoselective Hydrogenation of Nitroarenes. ACS Catalysis, 7(4), 2698-2708. doi:10.1021/acscatal.7b00170

Sorribes, I., Liu, L., Doménech-Carbó, A., & Corma, A. (2018). Nanolayered Cobalt–Molybdenum Sulfides as Highly Chemo- and Regioselective Catalysts for the Hydrogenation of Quinoline Derivatives. ACS Catalysis, 8(5), 4545-4557. doi:10.1021/acscatal.7b04260

TOPSOE, H. (1981). In situ M�ssbauer emission spectroscopy studies of unsupported and supported sulfided Co$z.sbnd;Mo hydrodesulfurization catalysts: Evidence for and nature of a Co$z.sbnd;Mo$z.sbnd;S phase. Journal of Catalysis, 68(2), 433-452. doi:10.1016/0021-9517(81)90114-7

WIVEL, C. (1981). On the catalytic significance of a Co$z.sbnd;Mo$z.sbnd;S phase in Co$z.sbnd;Mo/Al2O3 hydrodesulfurization catalysts: Combined in situ M�ssbauer emission spectroscopy and activity studies. Journal of Catalysis, 68(2), 453-463. doi:10.1016/0021-9517(81)90115-9

Clausen, B. S., Topsoe, H., Candia, R., Villadsen, J., Lengeler, B., Als-Nielsen, J., & Christensen, F. (1981). Extended x-ray absorption fine structure study of the cobalt-molybdenum hydrodesulfurization catalysts. The Journal of Physical Chemistry, 85(25), 3868-3872. doi:10.1021/j150625a032

Breysse, M., Bennett, B. A., Chadwick, D., & Vrinat, M. (2010). Structure and HDS Activity of Co-Mo Catalysts: A Comparison Of Alumina and Carbon Supports. Bulletin des Sociétés Chimiques Belges, 90(12), 1271-1278. doi:10.1002/bscb.19810901211

TOPSOE, N. (1983). Characterization of the structures and active sites in sulfided Co$z.sbnd;Mo/Al2O3 and Ni$z.sbnd;Mo/Al2O3 catalysts by NO chemisorption. Journal of Catalysis, 84(2), 386-401. doi:10.1016/0021-9517(83)90010-6

Kasztelan, S., Toulhoat, H., Grimblot, J., & Bonnelle, J. P. (1984). A geometrical model of the active phase of hydrotreating catalysts. Applied Catalysis, 13(1), 127-159. doi:10.1016/s0166-9834(00)83333-3

Topsøe, H., & Clausen, B. S. (1986). Active sites and support effects in hydrodesulfurization catalysts. Applied Catalysis, 25(1-2), 273-293. doi:10.1016/s0166-9834(00)81246-4

Byskov, L. S., Nørskov, J. K., Clausen, B. S., & Topsøe, H. (1999). DFT Calculations of Unpromoted and Promoted MoS2-Based Hydrodesulfurization Catalysts. Journal of Catalysis, 187(1), 109-122. doi:10.1006/jcat.1999.2598

Schweiger, H., Raybaud, P., & Toulhoat, H. (2002). Promoter Sensitive Shapes of Co(Ni)MoS Nanocatalysts in Sulfo-Reductive Conditions. Journal of Catalysis, 212(1), 33-38. doi:10.1006/jcat.2002.3737

Lauritsen, J. V., Bollinger, M. V., Lægsgaard, E., Jacobsen, K. W., Nørskov, J. K., Clausen, B. S., … Besenbacher, F. (2004). Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts. Journal of Catalysis, 221(2), 510-522. doi:10.1016/j.jcat.2003.09.015

Topsøe, H. (2007). The role of Co–Mo–S type structures in hydrotreating catalysts. Applied Catalysis A: General, 322, 3-8. doi:10.1016/j.apcata.2007.01.002

LAURITSEN, J., KIBSGAARD, J., OLESEN, G., MOSES, P., HINNEMANN, B., HELVEG, S., … LAGSGAARD, E. (2007). Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts. Journal of Catalysis, 249(2), 220-233. doi:10.1016/j.jcat.2007.04.013

Berhault, G., Perez De la Rosa, M., Mehta, A., Yácaman, M. J., & Chianelli, R. R. (2008). The single-layered morphology of supported MoS2-based catalysts—The role of the cobalt promoter and its effects in the hydrodesulfurization of dibenzothiophene. Applied Catalysis A: General, 345(1), 80-88. doi:10.1016/j.apcata.2008.04.034

Besenbacher, F., Brorson, M., Clausen, B. S., Helveg, S., Hinnemann, B., Kibsgaard, J., … Topsøe, H. (2008). Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: Insight into mechanistic, structural and particle size effects. Catalysis Today, 130(1), 86-96. doi:10.1016/j.cattod.2007.08.009

Gandubert, A. D., Krebs, E., Legens, C., Costa, D., Guillaume, D., & Raybaud, P. (2008). Optimal promoter edge decoration of CoMoS catalysts: A combined theoretical and experimental study. Catalysis Today, 130(1), 149-159. doi:10.1016/j.cattod.2007.06.041

Krebs, E., Silvi, B., & Raybaud, P. (2008). Mixed sites and promoter segregation: A DFT study of the manifestation of Le Chatelier’s principle for the Co(Ni)MoS active phase in reaction conditions. Catalysis Today, 130(1), 160-169. doi:10.1016/j.cattod.2007.06.081

Kibsgaard, J., Tuxen, A., Knudsen, K. G., Brorson, M., Topsøe, H., Lægsgaard, E., … Besenbacher, F. (2010). Comparative atomic-scale analysis of promotional effects by late 3d-transition metals in MoS2 hydrotreating catalysts. Journal of Catalysis, 272(2), 195-203. doi:10.1016/j.jcat.2010.03.018

Zhu, Y., Ramasse, Q. M., Brorson, M., Moses, P. G., Hansen, L. P., Kisielowski, C. F., & Helveg, S. (2014). Visualizing the Stoichiometry of Industrial-Style Co-Mo-S Catalysts with Single-Atom Sensitivity. Angewandte Chemie International Edition, 53(40), 10723-10727. doi:10.1002/anie.201405690

F. Scholz , U.Schröder , R.Gulaboski and A.Doménech-Carbó , Electrochemistry of Immobilized Particles and Droplets , Springer , Berlin-Heidelberg , 2nd edn, 2014

Doménech-Carbó, A., Labuda, J., & Scholz, F. (2012). Electroanalytical chemistry for the analysis of solids: Characterization and classification (IUPAC Technical Report). Pure and Applied Chemistry, 85(3), 609-631. doi:10.1351/pac-rep-11-11-13

McCullough, L. R., Childers, D. J., Watson, R. A., Kilos, B. A., Barton, D. G., Weitz, E., … Notestein, J. M. (2017). Acceptorless Dehydrogenative Coupling of Neat Alcohols Using Group VI Sulfide Catalysts. ACS Sustainable Chemistry & Engineering, 5(6), 4890-4896. doi:10.1021/acssuschemeng.7b00303

McCullough, L. R., Cheng, E. S., Gosavi, A. A., Kilos, B. A., Barton, D. G., Weitz, E., … Notestein, J. M. (2018). Gas phase acceptorless dehydrogenative coupling of ethanol over bulk MoS2 and spectroscopic measurement of structural disorder. Journal of Catalysis, 366, 159-166. doi:10.1016/j.jcat.2018.07.039

PIÉPLU, A., SAUR, O., LAVALLEY, J.-C., LEGENDRE, O., & NÉDEZ, C. (1998). Claus Catalysis and H2S Selective Oxidation. Catalysis Reviews, 40(4), 409-450. doi:10.1080/01614949808007113

Eow, J. S. (2002). Recovery of sulfur from sour acid gas: A review of the technology. Environmental Progress, 21(3), 143-162. doi:10.1002/ep.670210312

Huang, H., Yu, Y., & Chung, K. H. (2009). Recovery of Hydrogen and Sulfur by Indirect Electrolysis of Hydrogen Sulfide. Energy & Fuels, 23(9), 4420-4425. doi:10.1021/ef900424a

Singh, G., Nakade, P. G., Chetia, D., Jha, P., Mondal, U., Kumari, S., & Sen, S. (2016). Kinetics and mechanism of phase transfer catalyzed synthesis of aromatic thioethers by H 2 S-rich methyldiethanolamine. Journal of Industrial and Engineering Chemistry, 37, 190-197. doi:10.1016/j.jiec.2016.03.022

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem