Mostrar el registro sencillo del ítem
dc.contributor.author | Sorribes-Terrés, Iván | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.date.accessioned | 2020-11-13T04:33:03Z | |
dc.date.available | 2020-11-13T04:33:03Z | |
dc.date.issued | 2019-03-14 | es_ES |
dc.identifier.issn | 2041-6520 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/155013 | |
dc.description.abstract | [EN] Nanolayered cobalt-molybdenum sulphide (Co-Mo-S) materials have been established as excellent catalysts for C-S bond construction. These catalysts allow for the preparation of a broad range of thioethers in good to excellent yields from structurally diverse thiols and readily available primary as well as secondary alcohols. Chemoselectivity in the presence of sensitive groups such as double bonds, nitriles, carboxylic esters and halogens has been demonstrated. It is also shown that the reaction takes place through a hydrogen-autotransfer (borrowing hydrogen) mechanism that involves Co-Mo-Smediated dehydrogenation and hydrogenation reactions. A novel catalytic protocol based on the thioetherification of alcohols with hydrogen sulphide (H2S) to furnish symmetrical thioethers has also been developed using these earth-abundant metal-based sulphide catalysts. | es_ES |
dc.description.sponsorship | Financial support by the Spanish Government-MINECO through the program "Severo Ochoa" (SEV-2016-0683) is gratefully acknowledged. I. S. also acknowledges the Vice-Rectorate for Research, Innovation and Transfer of the Universitat Politecnica de Valencia (UPV) for a postdoctoral fellowship and the Spanish Government-MINECO for a "Juan de la Cierva-Incorporacion" fellowship. The authors also acknowledge the Microscopy Service of the UPV and Dr Jose Maria Moreno for kind help with TEM and STEM measurements. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Chemical Science | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.title | Nanolayered cobalt-molybdenum sulphides (Co-Mo-S) catalyse borrowing hydrogen C-S bond formation reactions of thiols or H2S with alcohols | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c8sc05782f | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Sorribes-Terrés, I.; Corma Canós, A. (2019). Nanolayered cobalt-molybdenum sulphides (Co-Mo-S) catalyse borrowing hydrogen C-S bond formation reactions of thiols or H2S with alcohols. Chemical Science. 10(10):3130-3142. https://doi.org/10.1039/c8sc05782f | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c8sc05782f | es_ES |
dc.description.upvformatpinicio | 3130 | es_ES |
dc.description.upvformatpfin | 3142 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 10 | es_ES |
dc.identifier.pmid | 30996896 | es_ES |
dc.identifier.pmcid | PMC6429612 | es_ES |
dc.relation.pasarela | S\409955 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | E. Block , Reactions of Organosulfur Compounds , Academic Press , New York , 1978 | es_ES |
dc.description.references | M. E. Peach , in The Chemistry of the Thiol Group , ed. S. Patai , John Wiley & Sons , London , 1979 , pp. 721–723 | es_ES |
dc.description.references | F. Bernardi , I. G.Csizmadia and A.Mangini , Organic Sulfur Chemistry. Theoretical and Experimental Advances , Elsevier , Amsterdam , 1985 | es_ES |
dc.description.references | R. J. Cremlyn , An Introduction to Organosulfur Chemistry , John Wiley & Sons , New York , 1996 | es_ES |
dc.description.references | Kondo, T., & Mitsudo, T. (2000). Metal-Catalyzed Carbon−Sulfur Bond Formation. Chemical Reviews, 100(8), 3205-3220. doi:10.1021/cr9902749 | es_ES |
dc.description.references | Liu, H., & Jiang, X. (2013). Transfer of Sulfur: From Simple to Diverse. Chemistry - An Asian Journal, 8(11), 2546-2563. doi:10.1002/asia.201300636 | es_ES |
dc.description.references | Artico, M., Silvestri, R., Pagnozzi, E., Bruno, B., Novellino, E., Greco, G., … La Colla, P. (2000). Structure-Based Design, Synthesis, and Biological Evaluation of Novel Pyrrolyl Aryl Sulfones: HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors Active at Nanomolar Concentrations. Journal of Medicinal Chemistry, 43(9), 1886-1891. doi:10.1021/jm9901125 | es_ES |
dc.description.references | Sun, Z.-Y., Botros, E., Su, A.-D., Kim, Y., Wang, E., Baturay, N. Z., & Kwon, C.-H. (2000). Sulfoxide-Containing Aromatic Nitrogen Mustards as Hypoxia-Directed Bioreductive Cytotoxins. Journal of Medicinal Chemistry, 43(22), 4160-4168. doi:10.1021/jm9904957 | es_ES |
dc.description.references | Wang, Y., Chackalamannil, S., Chang, W., Greenlee, W., Ruperto, V., Duffy, R. A., … Lachowicz, J. E. (2001). Design and synthesis of ether analogues as potent and selective M2 muscarinic receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 11(7), 891-894. doi:10.1016/s0960-894x(01)00100-7 | es_ES |
dc.description.references | Clader, J. W., Billard, W., Binch, H., Chen, L.-Y., Crosby, G., Duffy, R. A., … Greenlee, W. J. (2004). Muscarinic M2 antagonists: anthranilamide derivatives with exceptional selectivity and in vivo activity. Bioorganic & Medicinal Chemistry, 12(2), 319-326. doi:10.1016/j.bmc.2003.11.005 | es_ES |
dc.description.references | Kharasch, N., Potempa, S. J., & Wehrmeister, H. L. (1946). The Sulfenic Acids and their Derivatives. Chemical Reviews, 39(2), 269-332. doi:10.1021/cr60123a004 | es_ES |
dc.description.references | S. Patai , The Chemistry of the Functional Groups – The Chemistry of the Thiol Group , Wiley , London , 1974 | es_ES |
dc.description.references | Herriott, A. W., & Picker, D. (1975). Phase transfer catalysis. Evaluation of catalysis. Journal of the American Chemical Society, 97(9), 2345-2349. doi:10.1021/ja00842a006 | es_ES |
dc.description.references | SULFIDE SYNTHESIS IN PREPARATION OF DIALKYL AND ALKYL ARYL SULFIDES: NEOPENTYL PHENYL SULFIDE. (1978). Organic Syntheses, 58, 143. doi:10.15227/orgsyn.058.0143 | es_ES |
dc.description.references | Boscato, J. F., Catala, J. M., Franta, E., & Brossas, J. (1980). Action of elementary sulfur onto carbanions : a new route to dialkylpolysulfides. Tetrahedron Letters, 21(16), 1519-1520. doi:10.1016/s0040-4039(00)92762-x | es_ES |
dc.description.references | Kosugi, M., Ogata, T., Terada, M., Sano, H., & Migita, T. (1985). Palladium-catalyzed Reaction of Stannyl Sulfide with Aryl Bromide. Preparation of Aryl Sulfide. Bulletin of the Chemical Society of Japan, 58(12), 3657-3658. doi:10.1246/bcsj.58.3657 | es_ES |
dc.description.references | Hundscheid, F. J. A., Tandon, V. K., Rouwette, P. H. F. M., & van Leusen, A. M. (1987). Synthesis of chiral sulfonylmethyl isocyanides, and comparison of their propensities in asymmetric induction reactions with acetophenones1. Tetrahedron, 43(21), 5073-5088. doi:10.1016/s0040-4020(01)87684-5 | es_ES |
dc.description.references | Harpp, D. N., & Gingras, M. (1988). Organosulfur chemistry. Part 55. Fluorodestannylation. A powerful technique to liberate anions of oxygen, sulfur, selenium, and carbon. Journal of the American Chemical Society, 110(23), 7737-7745. doi:10.1021/ja00231a025 | es_ES |
dc.description.references | Gingras, M., Chan, T. H., & Harpp, D. N. (1990). New methodologies: fluorodemetalation of organogermanium, -tin, and -lead compounds. Applications with organometallic sulfides to produce highly active anions and spectroscopic evidence for pentavalent intermediates in substitution at tin. The Journal of Organic Chemistry, 55(7), 2078-2090. doi:10.1021/jo00294a021 | es_ES |
dc.description.references | Li, C.-J., & Harpp, D. N. (1992). A convenient preparation of arylthiostannanes. Tetrahedron Letters, 33(48), 7293-7294. doi:10.1016/s0040-4039(00)60169-7 | es_ES |
dc.description.references | Yin, J., & Pidgeon, C. (1997). A simple and efficient method for preparation of unsymmetrical sulfides. Tetrahedron Letters, 38(34), 5953-5954. doi:10.1016/s0040-4039(97)01352-x | es_ES |
dc.description.references | Malmström, J., Gupta, V., & Engman, L. (1998). Novel Antioxidants: Unexpected Rearrangements in the Radical Cyclization Approach to 2,3-Dihydrobenzo[b]thiophene-5-ol Derivatives. The Journal of Organic Chemistry, 63(10), 3318-3323. doi:10.1021/jo972087l | es_ES |
dc.description.references | Ichiishi, N., Malapit, C. A., Woźniak, Ł., & Sanford, M. S. (2017). Palladium- and Nickel-Catalyzed Decarbonylative C–S Coupling to Convert Thioesters to Thioethers. Organic Letters, 20(1), 44-47. doi:10.1021/acs.orglett.7b03305 | es_ES |
dc.description.references | Shen, C., Zhang, P., Sun, Q., Bai, S., Hor, T. S. A., & Liu, X. (2015). Recent advances in C–S bond formation via C–H bond functionalization and decarboxylation. Chemical Society Reviews, 44(1), 291-314. doi:10.1039/c4cs00239c | es_ES |
dc.description.references | Qiao, Z., & Jiang, X. (2017). Recent developments in sulfur–carbon bond formation reaction involving thiosulfates. Organic & Biomolecular Chemistry, 15(9), 1942-1946. doi:10.1039/c6ob02833k | es_ES |
dc.description.references | Page, P. C. B., Klair, S. S., Brown, M. P., Harding, M. M., Smith, C. S., Maginn, S. J., & Mulley, S. (1988). Carbon—sulphur bond formation catalysed by bis(diphenylphosphino)-methane complexes of platinum (II). Tetrahedron Letters, 29(35), 4477-4480. doi:10.1016/s0040-4039(00)80527-4 | es_ES |
dc.description.references | Beletskaya, I. P., & Cheprakov, A. V. (2004). Copper in cross-coupling reactions. Coordination Chemistry Reviews, 248(21-24), 2337-2364. doi:10.1016/j.ccr.2004.09.014 | es_ES |
dc.description.references | Fernández-Rodríguez, M. A., Shen, Q., & Hartwig, J. F. (2006). A General and Long-Lived Catalyst for the Palladium-Catalyzed Coupling of Aryl Halides with Thiols. Journal of the American Chemical Society, 128(7), 2180-2181. doi:10.1021/ja0580340 | es_ES |
dc.description.references | Arisawa, M., Suzuki, T., Ishikawa, T., & Yamaguchi, M. (2008). Rhodium-Catalyzed Substitution Reaction of Aryl Fluorides with Disulfides:p-Orientation in the Polyarylthiolation of Polyfluorobenzenes. Journal of the American Chemical Society, 130(37), 12214-12215. doi:10.1021/ja8049996 | es_ES |
dc.description.references | Correa, A., Carril, M., & Bolm, C. (2008). Iron-Catalyzed S-Arylation of Thiols with Aryl Iodides. Angewandte Chemie International Edition, 47(15), 2880-2883. doi:10.1002/anie.200705668 | es_ES |
dc.description.references | Wu, J.-R., Lin, C.-H., & Lee, C.-F. (2009). Iron-catalyzed thioetherification of thiols with aryl iodides. Chemical Communications, (29), 4450. doi:10.1039/b907362k | es_ES |
dc.description.references | Fernández-Rodríguez, M. A., & Hartwig, J. F. (2010). One-Pot Synthesis of Unsymmetrical Diaryl Thioethers by Palladium-Catalyzed Coupling of Two Aryl Bromides and a Thiol Surrogate. Chemistry - A European Journal, 16(8), 2355-2359. doi:10.1002/chem.200902313 | es_ES |
dc.description.references | Beletskaya, I. P., & Ananikov, V. P. (2011). Transition-Metal-Catalyzed C−S, C−Se, and C−Te Bond Formation via Cross-Coupling and Atom-Economic Addition Reactions. Chemical Reviews, 111(3), 1596-1636. doi:10.1021/cr100347k | es_ES |
dc.description.references | Sayah, M., & Organ, M. G. (2011). Carbon-Sulfur Bond Formation of Challenging Substrates at Low Temperature by Using Pd-PEPPSI-IPent. Chemistry - A European Journal, 17(42), 11719-11722. doi:10.1002/chem.201102158 | es_ES |
dc.description.references | Lan, M.-T., Wu, W.-Y., Huang, S.-H., Luo, K.-L., & Tsai, F.-Y. (2011). Reusable and efficient CoCl2·6H2O/cationic 2,2’-bipyridyl system-catalyzed S-arylation of aryl halides with thiols in water under air. RSC Advances, 1(9), 1751. doi:10.1039/c1ra00406a | es_ES |
dc.description.references | Cabrero-Antonino, J. R., García, T., Rubio-Marqués, P., Vidal-Moya, J. A., Leyva-Pérez, A., Al-Deyab, S. S., … Corma, A. (2011). Synthesis of Organic−Inorganic Hybrid Solids with Copper Complex Framework and Their Catalytic Activity for the S-Arylation and the Azide−Alkyne Cycloaddition Reactions. ACS Catalysis, 1(2), 147-158. doi:10.1021/cs100086y | es_ES |
dc.description.references | Baig, R. B. N., & Varma, R. S. (2012). A highly active and magnetically retrievable nanoferrite–DOPA–copper catalyst for the coupling of thiophenols with aryl halides. Chemical Communications, 48(20), 2582. doi:10.1039/c2cc17283f | es_ES |
dc.description.references | Liao, Y., Jiang, P., Chen, S., Qi, H., & Deng, G.-J. (2013). Iodine-catalyzed efficient 2-arylsulfanylphenol formation from thiols and cyclohexanones. Green Chemistry, 15(12), 3302. doi:10.1039/c3gc41671b | es_ES |
dc.description.references | Kamal, A., Srinivasulu, V., Murty, J. N. S. R. C., Shankaraiah, N., Nagesh, N., Srinivasa Reddy, T., & Subba Rao, A. V. (2013). Copper Oxide Nanoparticles Supported on Graphene Oxide- Catalyzed S-Arylation: An Efficient and Ligand-Free Synthesis of Aryl Sulfides. Advanced Synthesis & Catalysis, 355(11-12), 2297-2307. doi:10.1002/adsc.201300416 | es_ES |
dc.description.references | Timpa, S. D., Pell, C. J., & Ozerov, O. V. (2014). A Well-Defined (POCOP)Rh Catalyst for the Coupling of Aryl Halides with Thiols. Journal of the American Chemical Society, 136(42), 14772-14779. doi:10.1021/ja505576g | es_ES |
dc.description.references | Lee, C.-F., Liu, Y.-C., & Badsara, S. S. (2014). Transition-Metal-Catalyzed CS Bond Coupling Reaction. Chemistry - An Asian Journal, 9(3), 706-722. doi:10.1002/asia.201301500 | es_ES |
dc.description.references | Thomas, A. M., Asha, S., Sindhu, K. S., & Anilkumar, G. (2015). A general and inexpensive protocol for the Cu-catalyzed C–S cross-coupling reaction between aryl halides and thiols. Tetrahedron Letters, 56(47), 6560-6564. doi:10.1016/j.tetlet.2015.10.014 | es_ES |
dc.description.references | Oderinde, M. S., Frenette, M., Robbins, D. W., Aquila, B., & Johannes, J. W. (2016). Photoredox Mediated Nickel Catalyzed Cross-Coupling of Thiols With Aryl and Heteroaryl Iodides via Thiyl Radicals. Journal of the American Chemical Society, 138(6), 1760-1763. doi:10.1021/jacs.5b11244 | es_ES |
dc.description.references | Kanemoto, K., Sugimura, Y., Shimizu, S., Yoshida, S., & Hosoya, T. (2017). Rhodium-catalyzed odorless synthesis of diaryl sulfides from borylarenes and S-aryl thiosulfonates. Chemical Communications, 53(77), 10640-10643. doi:10.1039/c7cc05868c | es_ES |
dc.description.references | Chen, C.-W., Chen, Y.-L., Reddy, D. M., Du, K., Li, C.-E., Shih, B.-H., … Lee, C.-F. (2017). CuI/Oxalic Diamide-Catalyzed Cross-Coupling of Thiols with Aryl Bromides and Chlorides. Chemistry - A European Journal, 23(42), 10087-10091. doi:10.1002/chem.201701671 | es_ES |
dc.description.references | Lian, Z., Bhawal, B. N., Yu, P., & Morandi, B. (2017). Palladium-catalyzed carbon-sulfur or carbon-phosphorus bond metathesis by reversible arylation. Science, 356(6342), 1059-1063. doi:10.1126/science.aam9041 | es_ES |
dc.description.references | Fang, Y., Rogge, T., Ackermann, L., Wang, S.-Y., & Ji, S.-J. (2018). Nickel-catalyzed reductive thiolation and selenylation of unactivated alkyl bromides. Nature Communications, 9(1). doi:10.1038/s41467-018-04646-2 | es_ES |
dc.description.references | Jones, K. D., Power, D. J., Bierer, D., Gericke, K. M., & Stewart, S. G. (2017). Nickel Phosphite/Phosphine-Catalyzed C–S Cross-Coupling of Aryl Chlorides and Thiols. Organic Letters, 20(1), 208-211. doi:10.1021/acs.orglett.7b03560 | es_ES |
dc.description.references | Kumar, P., Pandey, R. K., & Hegde, V. R. (1999). Anti-Markovnikov Addition of Thiols Across Double Bonds Catalyzed by H-Rho-Zeolite. Synlett, 1999(12), 1921-1922. doi:10.1055/s-1999-2976 | es_ES |
dc.description.references | Kanagasabapathy, S., Sudalai, A., & Benicewicz, B. C. (2001). Montmorillonite K 10-catalyzed regioselective addition of thiols and thiobenzoic acids onto olefins: an efficient synthesis of dithiocarboxylic esters. Tetrahedron Letters, 42(23), 3791-3794. doi:10.1016/s0040-4039(01)00570-6 | es_ES |
dc.description.references | Morita, N., & Krause, N. (2006). The First Gold-Catalyzed CS Bond Formation: Cycloisomerization of α-Thioallenes to 2,5-Dihydrothiophenes. Angewandte Chemie International Edition, 45(12), 1897-1899. doi:10.1002/anie.200503846 | es_ES |
dc.description.references | Kawatsura, M., Komatsu, Y., Yamamoto, M., Hayase, S., & Itoh, T. (2007). Enantioselective C–S bond formation by iron/Pybox catalyzed Michael addition of thiols to (E)-3-crotonoyloxazolidin-2-one. Tetrahedron Letters, 48(37), 6480-6482. doi:10.1016/j.tetlet.2007.07.053 | es_ES |
dc.description.references | Banerjee, S., Das, J., Alvarez, R. P., & Santra, S. (2010). Silicananoparticles as a reusable catalyst: a straightforward route for the synthesis of thioethers, thioesters, vinyl thioethers and thio-Michael adducts under neutral reaction conditions. New J. Chem., 34(2), 302-306. doi:10.1039/b9nj00399a | es_ES |
dc.description.references | Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2012). Iron-Catalysed Markovnikov Hydrothiolation of Styrenes. Advanced Synthesis & Catalysis, 354(4), 678-687. doi:10.1002/adsc.201100731 | es_ES |
dc.description.references | Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2013). Iron(III) Triflimide as a Catalytic Substitute for Gold(I) in Hydroaddition Reactions to Unsaturated Carbon-Carbon Bonds. Chemistry - A European Journal, 19(26), 8627-8633. doi:10.1002/chem.201300386 | es_ES |
dc.description.references | Zeng, X. (2013). Recent Advances in Catalytic Sequential Reactions Involving Hydroelement Addition to Carbon–Carbon Multiple Bonds. Chemical Reviews, 113(8), 6864-6900. doi:10.1021/cr400082n | es_ES |
dc.description.references | Kuciński, K., Pawluć, P., & Hreczycho, G. (2015). Scandium(III) Triflate-Catalyzedanti-Markovnikov Hydrothiolation of Functionalized Olefins. Advanced Synthesis & Catalysis, 357(18), 3936-3942. doi:10.1002/adsc.201500720 | es_ES |
dc.description.references | Kumar, R., Saima, Shard, A., Andhare, N. H., Richa, & Sinha, A. K. (2014). Thiol-Ene «Click» Reaction Triggered by Neutral Ionic Liquid: The «Ambiphilic» Character of [hmim]Br in the Regioselective Nucleophilic Hydrothiolation. Angewandte Chemie International Edition, 54(3), 828-832. doi:10.1002/anie.201408721 | es_ES |
dc.description.references | Pérez, M., Mahdi, T., Hounjet, L. J., & Stephan, D. W. (2015). Electrophilic phosphonium cations catalyze hydroarylation and hydrothiolation of olefins. Chemical Communications, 51(56), 11301-11304. doi:10.1039/c5cc03572d | es_ES |
dc.description.references | Palacios, L., Di Giuseppe, A., Artigas, M. J., Polo, V., Lahoz, F. J., Castarlenas, R., … Oro, L. A. (2016). Mechanistic insight into the pyridine enhanced α-selectivity in alkyne hydrothiolation catalysed by quinolinolate–rhodium(i)–N-heterocyclic carbene complexes. Catalysis Science & Technology, 6(24), 8548-8561. doi:10.1039/c6cy01884j | es_ES |
dc.description.references | Kennemur, J. L., Kortman, G. D., & Hull, K. L. (2016). Rhodium-Catalyzed Regiodivergent Hydrothiolation of Allyl Amines and Imines. Journal of the American Chemical Society, 138(36), 11914-11919. doi:10.1021/jacs.6b07142 | es_ES |
dc.description.references | Palacios, L., Meheut, Y., Galiana-Cameo, M., Artigas, M. J., Di Giuseppe, A., Lahoz, F. J., … Oro, L. A. (2017). Design of Highly Selective Alkyne Hydrothiolation RhI-NHC Catalysts: Carbonyl-Triggered Nonoxidative Mechanism. Organometallics, 36(11), 2198-2207. doi:10.1021/acs.organomet.7b00251 | es_ES |
dc.description.references | Cabrero-Antonino, J. R., Tejeda-Serrano, M., Quesada, M., Vidal-Moya, J. A., Leyva-Pérez, A., & Corma, A. (2017). Bimetallic nanosized solids with acid and redox properties for catalytic activation of C–C and C–H bonds. Chemical Science, 8(1), 689-696. doi:10.1039/c6sc03335k | es_ES |
dc.description.references | Martin, M. T., Thomas, A. M., & York, D. G. (2002). Direct synthesis of thioethers from sulfonyl chlorides and activated alcohols. Tetrahedron Letters, 43(12), 2145-2147. doi:10.1016/s0040-4039(02)00218-6 | es_ES |
dc.description.references | Saxena, A., Kumar, A., & Mozumdar, S. (2007). Ni-nanoparticles: An efficient green catalyst for chemo-selective oxidative coupling of thiols. Journal of Molecular Catalysis A: Chemical, 269(1-2), 35-40. doi:10.1016/j.molcata.2006.12.042 | es_ES |
dc.description.references | Bandgar, B. P., Gawande, S. S., & Muley, D. B. (2010). Silica supported perchloric acid (HClO4-SiO2): a green, reusable, and highly efficient heterogeneous catalyst for the synthesis of thioethers under solvent-free conditions at room temperature. Green Chemistry Letters and Reviews, 3(1), 49-54. doi:10.1080/17518250903447118 | es_ES |
dc.description.references | Bahrami, K., Khodaei, M., & Khodadoustan, N. (2011). TAPC-Catalyzed Synthesis of Thioethers from Thiols and Alcohols. Synlett, 2011(15), 2206-2210. doi:10.1055/s-0030-1261206 | es_ES |
dc.description.references | Basu, B., Kundu, S., & Sengupta, D. (2013). Graphene oxide as a carbocatalyst: the first example of a one-pot sequential dehydration–hydrothiolation of secondary aryl alcohols. RSC Advances, 3(44), 22130. doi:10.1039/c3ra44712j | es_ES |
dc.description.references | Hikawa, H., Toyomoto, M., Kikkawa, S., & Azumaya, I. (2015). Direct substitution of benzylic alcohols with electron-deficient benzenethiols via π-benzylpalladium(ii) in water. Organic & Biomolecular Chemistry, 13(47), 11459-11465. doi:10.1039/c5ob01717c | es_ES |
dc.description.references | Hikawa, H., Machino, Y., Toyomoto, M., Kikkawa, S., & Azumaya, I. (2016). Cationic palladium(ii)-catalyzed dehydrative nucleophilic substitutions of benzhydryl alcohols with electron-deficient benzenethiols in water. Organic & Biomolecular Chemistry, 14(29), 7038-7045. doi:10.1039/c6ob01140c | es_ES |
dc.description.references | Santoro, F., Mariani, M., Zaccheria, F., Psaro, R., & Ravasio, N. (2016). Selective synthesis of thioethers in the presence of a transition-metal-free solid Lewis acid. Beilstein Journal of Organic Chemistry, 12, 2627-2635. doi:10.3762/bjoc.12.259 | es_ES |
dc.description.references | Hamid, M. H. S. A., Slatford, P. A., & Williams, J. M. J. (2007). Borrowing Hydrogen in the Activation of Alcohols. Advanced Synthesis & Catalysis, 349(10), 1555-1575. doi:10.1002/adsc.200600638 | es_ES |
dc.description.references | Nixon, T. D., Whittlesey, M. K., & Williams, J. M. J. (2009). Transition metal catalysed reactions of alcohols using borrowing hydrogen methodology. Dalton Trans., (5), 753-762. doi:10.1039/b813383b | es_ES |
dc.description.references | Hollmann, D. (2014). Advances in Asymmetric Borrowing Hydrogen Catalysis. ChemSusChem, 7(9), 2411-2413. doi:10.1002/cssc.201402320 | es_ES |
dc.description.references | Muzart, J. (2015). Pd-Catalyzed Hydrogen-Transfer Reactions from Alcohols to C=C, C=O, and C=N Bonds. European Journal of Organic Chemistry, 2015(26), 5693-5707. doi:10.1002/ejoc.201500401 | es_ES |
dc.description.references | Corma, A., Navas, J., & Sabater, M. J. (2018). Advances in One-Pot Synthesis through Borrowing Hydrogen Catalysis. Chemical Reviews, 118(4), 1410-1459. doi:10.1021/acs.chemrev.7b00340 | es_ES |
dc.description.references | Guillena, G., Ramón, D. J., & Yus, M. (2009). Hydrogen Autotransfer in theN-Alkylation of Amines and Related Compounds using Alcohols and Amines as Electrophiles. Chemical Reviews, 110(3), 1611-1641. doi:10.1021/cr9002159 | es_ES |
dc.description.references | Bähn, S., Imm, S., Neubert, L., Zhang, M., Neumann, H., & Beller, M. (2011). The Catalytic Amination of Alcohols. ChemCatChem, 3(12), 1853-1864. doi:10.1002/cctc.201100255 | es_ES |
dc.description.references | Yang, Q., Wang, Q., & Yu, Z. (2015). Substitution of alcohols by N-nucleophiles via transition metal-catalyzed dehydrogenation. Chemical Society Reviews, 44(8), 2305-2329. doi:10.1039/c4cs00496e | es_ES |
dc.description.references | Ma, X., Su, C., & Xu, Q. (2016). N-Alkylation by Hydrogen Autotransfer Reactions. Topics in Current Chemistry, 374(3). doi:10.1007/s41061-016-0027-1 | es_ES |
dc.description.references | Guillena, G., Ramón, D. J., & Yus, M. (2007). Alcohols as Electrophiles in CC Bond-Forming Reactions: The Hydrogen Autotransfer Process. Angewandte Chemie International Edition, 46(14), 2358-2364. doi:10.1002/anie.200603794 | es_ES |
dc.description.references | Huang, F., Liu, Z., & Yu, Z. (2015). C-Alkylation of Ketones and Related Compounds by Alcohols: Transition-Metal-Catalyzed Dehydrogenation. Angewandte Chemie International Edition, 55(3), 862-875. doi:10.1002/anie.201507521 | es_ES |
dc.description.references | Obora, Y. (2016). C-Alkylation by Hydrogen Autotransfer Reactions. Topics in Current Chemistry, 374(2). doi:10.1007/s41061-016-0012-8 | es_ES |
dc.description.references | Corma, A., Navas, J., Ródenas, T., & Sabater, M. J. (2013). One‐Pot Palladium‐Catalyzed Borrowing Hydrogen Synthesis of Thioethers. Chemistry – A European Journal, 19(51), 17464-17471. doi:10.1002/chem.201302226 | es_ES |
dc.description.references | Glass, R. S. (1976). Reductive Sulfidation. Conversion of Aldehydes into Sulfides. Synthetic Communications, 6(1), 47-51. doi:10.1080/00397917608062132 | es_ES |
dc.description.references | Kikugawa, Y. (1981). A NEW SYNTHESIS OF SULFIDES FROM THIOLS AND ALDEHYDES OR KETONES WITH PYRIDINE-BORANE IN TRIFLUOROACETIC ACID. Chemistry Letters, 10(8), 1157-1158. doi:10.1246/cl.1981.1157 | es_ES |
dc.description.references | Olah, G. A., Wang, Q., Trivedi, N. J., & Surya Prakash, G. K. (1992). Boron Trifluoride Monohydrate Catalyzed One-Flask Preparation of Sulfides from Carbonyl Compounds with Thiols and Triethylsilane. Synthesis, 1992(05), 465-466. doi:10.1055/s-1992-26138 | es_ES |
dc.description.references | Olah, G. A., Wang, Q., Li, X., & Surya Prakash, G. K. (1993). Boron Trifluoride Monohydrate Catalyzed One-Flask 2,2,2-Trifluoro-1-(ethylthio)ethylation of Aromatics with Trifluoroacetaldehyde Hydrate and Ethanethiol1. Synlett, 1993(01), 32-34. doi:10.1055/s-1993-22336 | es_ES |
dc.description.references | Liu, L., Concepción, P., & Corma, A. (2016). Non-noble metal catalysts for hydrogenation: A facile method for preparing Co nanoparticles covered with thin layered carbon. Journal of Catalysis, 340, 1-9. doi:10.1016/j.jcat.2016.04.006 | es_ES |
dc.description.references | Liu, L., Gao, F., Concepción, P., & Corma, A. (2017). A new strategy to transform mono and bimetallic non-noble metal nanoparticles into highly active and chemoselective hydrogenation catalysts. Journal of Catalysis, 350, 218-225. doi:10.1016/j.jcat.2017.03.014 | es_ES |
dc.description.references | Millán, R., Liu, L., Boronat, M., & Corma, A. (2018). A new molecular pathway allows the chemoselective reduction of nitroaromatics on non-noble metal catalysts. Journal of Catalysis, 364, 19-30. doi:10.1016/j.jcat.2018.05.004 | es_ES |
dc.description.references | Filonenko, G. A., van Putten, R., Hensen, E. J. M., & Pidko, E. A. (2018). Catalytic (de)hydrogenation promoted by non-precious metals – Co, Fe and Mn: recent advances in an emerging field. Chemical Society Reviews, 47(4), 1459-1483. doi:10.1039/c7cs00334j | es_ES |
dc.description.references | Taguchi, K., Nakagawa, H., Hirabayashi, T., Sakaguchi, S., & Ishii, Y. (2004). An Efficient Direct α-Alkylation of Ketones with Primary Alcohols Catalyzed by [Ir(cod)Cl]2/PPh3/KOH System without Solvent. Journal of the American Chemical Society, 126(1), 72-73. doi:10.1021/ja037552c | es_ES |
dc.description.references | Burling, S., Paine, B. M., Nama, D., Brown, V. S., Mahon, M. F., Prior, T. J., … Williams, J. M. J. (2007). CH Activation Reactions of Ruthenium N-Heterocyclic Carbene Complexes: Application in a Catalytic Tandem Reaction Involving CC Bond Formation from Alcohols. Journal of the American Chemical Society, 129(7), 1987-1995. doi:10.1021/ja065790c | es_ES |
dc.description.references | Iuchi, Y., Obora, Y., & Ishii, Y. (2010). Iridium-Catalyzed α-Alkylation of Acetates with Primary Alcohols and Diols. Journal of the American Chemical Society, 132(8), 2536-2537. doi:10.1021/ja9106989 | es_ES |
dc.description.references | Blank, B., & Kempe, R. (2010). Catalytic Alkylation of Methyl-N-Heteroaromatics with Alcohols. Journal of the American Chemical Society, 132(3), 924-925. doi:10.1021/ja9095413 | es_ES |
dc.description.references | Obora, Y., Anno, Y., Okamoto, R., Matsu-ura, T., & Ishii, Y. (2011). Iridium-Catalyzed Reactions of ω-Arylalkanols to α,ω-Diarylalkanes. Angewandte Chemie International Edition, 50(37), 8618-8622. doi:10.1002/anie.201104452 | es_ES |
dc.description.references | Peña-López, M., Neumann, H., & Beller, M. (2015). Ruthenium pincer-catalyzed synthesis of substituted γ-butyrolactones using hydrogen autotransfer methodology. Chemical Communications, 51(66), 13082-13085. doi:10.1039/c5cc01708d | es_ES |
dc.description.references | Guo, L., Ma, X., Fang, H., Jia, X., & Huang, Z. (2015). A General and Mild Catalytic α-Alkylation of Unactivated Esters Using Alcohols. Angewandte Chemie International Edition, 54(13), 4023-4027. doi:10.1002/anie.201410293 | es_ES |
dc.description.references | Shen, D., Poole, D. L., Shotton, C. C., Kornahrens, A. F., Healy, M. P., & Donohoe, T. J. (2014). Hydrogen-Borrowing and Interrupted-Hydrogen-Borrowing Reactions of Ketones and Methanol Catalyzed by Iridium. Angewandte Chemie International Edition, 54(5), 1642-1645. doi:10.1002/anie.201410391 | es_ES |
dc.description.references | Zou, Q., Wang, C., Smith, J., Xue, D., & Xiao, J. (2015). Alkylation of Amines with Alcohols and Amines by a Single Catalyst under Mild Conditions. Chemistry - A European Journal, 21(27), 9656-9661. doi:10.1002/chem.201501109 | es_ES |
dc.description.references | Peña-López, M., Neumann, H., & Beller, M. (2016). (Enantio)selective Hydrogen Autotransfer: Ruthenium-Catalyzed Synthesis of Oxazolidin-2-ones from Urea and Diols. Angewandte Chemie International Edition, 55(27), 7826-7830. doi:10.1002/anie.201600698 | es_ES |
dc.description.references | Wang, Q., Wu, K., & Yu, Z. (2016). Ruthenium(III)-Catalyzed β-Alkylation of Secondary Alcohols with Primary Alcohols. Organometallics, 35(9), 1251-1256. doi:10.1021/acs.organomet.6b00130 | es_ES |
dc.description.references | Said Stålsmeden, A., Belmonte Vázquez, J. L., van Weerdenburg, K., Rae, R., Norrby, P.-O., & Kann, N. (2016). Glycerol Upgrading via Hydrogen Borrowing: Direct Ruthenium-Catalyzed Amination of the Glycerol Derivative Solketal. ACS Sustainable Chemistry & Engineering, 4(10), 5730-5736. doi:10.1021/acssuschemeng.6b01659 | es_ES |
dc.description.references | Yang, J., Liu, X., Meng, D.-L., Chen, H.-Y., Zong, Z.-H., Feng, T.-T., & Sun, K. (2012). Efficient Iron-Catalyzed Direct β-Alkylation of Secondary Alcohols with Primary Alcohols. Advanced Synthesis & Catalysis, 354(2-3), 328-334. doi:10.1002/adsc.201000907 | es_ES |
dc.description.references | Bala, M., Verma, P. K., Sharma, U., Kumar, N., & Singh, B. (2013). Iron phthalocyanine as an efficient and versatile catalyst for N-alkylation of heterocyclic amines with alcohols: one-pot synthesis of 2-substituted benzimidazoles, benzothiazoles and benzoxazoles. Green Chemistry, 15(6), 1687. doi:10.1039/c3gc40137e | es_ES |
dc.description.references | Yan, T., Feringa, B. L., & Barta, K. (2014). Iron catalysed direct alkylation of amines with alcohols. Nature Communications, 5(1). doi:10.1038/ncomms6602 | es_ES |
dc.description.references | Elangovan, S., Sortais, J.-B., Beller, M., & Darcel, C. (2015). Iron-Catalyzed α-Alkylation of Ketones with Alcohols. Angewandte Chemie International Edition, 54(48), 14483-14486. doi:10.1002/anie.201506698 | es_ES |
dc.description.references | Pan, H.-J., Ng, T. W., & Zhao, Y. (2015). Iron-catalyzed amination of alcohols assisted by Lewis acid. Chemical Communications, 51(59), 11907-11910. doi:10.1039/c5cc03399c | es_ES |
dc.description.references | Mastalir, M., Stöger, B., Pittenauer, E., Puchberger, M., Allmaier, G., & Kirchner, K. (2016). Air Stable Iron(II) PNP Pincer Complexes as Efficient Catalysts for the Selective Alkylation of Amines with Alcohols. Advanced Synthesis & Catalysis, 358(23), 3824-3831. doi:10.1002/adsc.201600689 | es_ES |
dc.description.references | Peña-López, M., Neumann, H., & Beller, M. (2016). Iron-Catalyzed Reaction of Urea with Alcohols and Amines: A Safe Alternative for the Synthesis of Primary Carbamates. ChemSusChem, 9(16), 2233-2238. doi:10.1002/cssc.201600587 | es_ES |
dc.description.references | Yan, T., Feringa, B. L., & Barta, K. (2015). Benzylamines via Iron-Catalyzed Direct Amination of Benzyl Alcohols. ACS Catalysis, 6(1), 381-388. doi:10.1021/acscatal.5b02160 | es_ES |
dc.description.references | Polidano, K., Allen, B. D. W., Williams, J. M. J., & Morrill, L. C. (2018). Iron-Catalyzed Methylation Using the Borrowing Hydrogen Approach. ACS Catalysis, 8(7), 6440-6445. doi:10.1021/acscatal.8b02158 | es_ES |
dc.description.references | Rösler, S., Ertl, M., Irrgang, T., & Kempe, R. (2015). Cobalt-Catalyzed Alkylation of Aromatic Amines by Alcohols. Angewandte Chemie International Edition, 54(50), 15046-15050. doi:10.1002/anie.201507955 | es_ES |
dc.description.references | Deibl, N., & Kempe, R. (2016). General and Mild Cobalt-Catalyzed C-Alkylation of Unactivated Amides and Esters with Alcohols. Journal of the American Chemical Society, 138(34), 10786-10789. doi:10.1021/jacs.6b06448 | es_ES |
dc.description.references | Yin, Z., Zeng, H., Wu, J., Zheng, S., & Zhang, G. (2016). Cobalt-Catalyzed Synthesis of Aromatic, Aliphatic, and Cyclic Secondary Amines via a «Hydrogen-Borrowing» Strategy. ACS Catalysis, 6(10), 6546-6550. doi:10.1021/acscatal.6b02218 | es_ES |
dc.description.references | Freitag, F., Irrgang, T., & Kempe, R. (2017). Cobalt-Catalyzed Alkylation of Secondary Alcohols with Primary Alcohols via Borrowing Hydrogen/Hydrogen Autotransfer. Chemistry - A European Journal, 23(50), 12110-12113. doi:10.1002/chem.201701211 | es_ES |
dc.description.references | Zhang, G., Wu, J., Zeng, H., Zhang, S., Yin, Z., & Zheng, S. (2017). Cobalt-Catalyzed α-Alkylation of Ketones with Primary Alcohols. Organic Letters, 19(5), 1080-1083. doi:10.1021/acs.orglett.7b00106 | es_ES |
dc.description.references | Liao, S., Yu, K., Li, Q., Tian, H., Zhang, Z., Yu, X., & Xu, Q. (2012). Copper-catalyzed C-alkylation of secondary alcohols and methyl ketones with alcohols employing the aerobic relay race methodology. Organic & Biomolecular Chemistry, 10(15), 2973. doi:10.1039/c1ob06739g | es_ES |
dc.description.references | Elangovan, S., Neumann, J., Sortais, J.-B., Junge, K., Darcel, C., & Beller, M. (2016). Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes. Nature Communications, 7(1). doi:10.1038/ncomms12641 | es_ES |
dc.description.references | Mukherjee, A., Nerush, A., Leitus, G., Shimon, L. J. W., Ben David, Y., Espinosa Jalapa, N. A., & Milstein, D. (2016). Manganese-Catalyzed Environmentally Benign Dehydrogenative Coupling of Alcohols and Amines to Form Aldimines and H2: A Catalytic and Mechanistic Study. Journal of the American Chemical Society, 138(13), 4298-4301. doi:10.1021/jacs.5b13519 | es_ES |
dc.description.references | Peña-López, M., Piehl, P., Elangovan, S., Neumann, H., & Beller, M. (2016). Manganese-Catalyzed Hydrogen-Autotransfer C−C Bond Formation: α-Alkylation of Ketones with Primary Alcohols. Angewandte Chemie International Edition, 55(48), 14967-14971. doi:10.1002/anie.201607072 | es_ES |
dc.description.references | Bruneau-Voisine, A., Wang, D., Dorcet, V., Roisnel, T., Darcel, C., & Sortais, J.-B. (2017). Mono-N-methylation of anilines with methanol catalyzed by a manganese pincer-complex. Journal of Catalysis, 347, 57-62. doi:10.1016/j.jcat.2017.01.004 | es_ES |
dc.description.references | Deibl, N., & Kempe, R. (2017). Manganese‐Catalyzed Multicomponent Synthesis of Pyrimidines from Alcohols and Amidines. Angewandte Chemie International Edition, 56(6), 1663-1666. doi:10.1002/anie.201611318 | es_ES |
dc.description.references | Fu, S., Shao, Z., Wang, Y., & Liu, Q. (2017). Manganese-Catalyzed Upgrading of Ethanol into 1-Butanol. Journal of the American Chemical Society, 139(34), 11941-11948. doi:10.1021/jacs.7b05939 | es_ES |
dc.description.references | Neumann, J., Elangovan, S., Spannenberg, A., Junge, K., & Beller, M. (2017). Improved and General Manganese‐Catalyzed N‐Methylation of Aromatic Amines Using Methanol. Chemistry – A European Journal, 23(23), 5410-5413. doi:10.1002/chem.201605218 | es_ES |
dc.description.references | Barman, M. K., Waiba, S., & Maji, B. (2018). Manganese-Catalyzed Direct Olefination of Methyl-Substituted Heteroarenes with Primary Alcohols. Angewandte Chemie International Edition, 57(29), 9126-9130. doi:10.1002/anie.201804729 | es_ES |
dc.description.references | Das, U. K., Ben-David, Y., Diskin-Posner, Y., & Milstein, D. (2018). N-Substituted Hydrazones by Manganese-Catalyzed Coupling of Alcohols with Hydrazine: Borrowing Hydrogen and Acceptorless Dehydrogenation in One System. Angewandte Chemie International Edition, 57(8), 2179-2182. doi:10.1002/anie.201712593 | es_ES |
dc.description.references | Piehl, P., Peña-López, M., Frey, A., Neumann, H., & Beller, M. (2017). Hydrogen autotransfer and related dehydrogenative coupling reactions using a rhenium(i) pincer catalyst. Chemical Communications, 53(22), 3265-3268. doi:10.1039/c6cc09977g | es_ES |
dc.description.references | Carlini, C., Macinai, A., Marchionna, M., Noviello, M., Galletti, A. M. R., & Sbrana, G. (2003). Selective synthesis of isobutanol by means of the Guerbet reaction. Journal of Molecular Catalysis A: Chemical, 206(1-2), 409-418. doi:10.1016/s1381-1169(03)00453-9 | es_ES |
dc.description.references | Alonso, F., Riente, P., & Yus, M. (2008). Alcohols for the α-Alkylation of Methyl Ketones and Indirect Aza-Wittig Reaction Promoted by Nickel Nanoparticles. European Journal of Organic Chemistry, 2008(29), 4908-4914. doi:10.1002/ejoc.200800729 | es_ES |
dc.description.references | Shimizu, K., Kanno, S., Kon, K., Hakim Siddiki, S. M. A., Tanaka, H., & Sakata, Y. (2014). N-alkylation of ammonia and amines with alcohols catalyzed by Ni-loaded CaSiO3. Catalysis Today, 232, 134-138. doi:10.1016/j.cattod.2013.09.002 | es_ES |
dc.description.references | Onyestyák, G., Novodárszki, G., Barthos, R., Klébert, S., Wellisch, Á. F., & Pilbáth, A. (2015). Acetone alkylation with ethanol over multifunctional catalysts by a borrowing hydrogen strategy. RSC Advances, 5(120), 99502-99509. doi:10.1039/c5ra17889d | es_ES |
dc.description.references | Xu, J., Yue, H., Liu, S., Wang, H., Du, Y., Xu, C., … Liu, C. (2016). Cu–Ag/hydrotalcite catalysts for dehydrogenative cross-coupling of primary and secondary benzylic alcohols. RSC Advances, 6(29), 24164-24174. doi:10.1039/c5ra22542f | es_ES |
dc.description.references | H. Topsøe , B. S.Clausen and F. E.Massoth , Hydrotreating Catalysis, Science and Technology , Springer-Verlag , Heidelberg , 1996 | es_ES |
dc.description.references | K. Toshiaki , I.Atsushi and Q.Weihua , Hydrodesulfurization and Hydrodenitrogenation: Chemistry and Engineering , Wiley-VCH , Tokyo , 1999 | es_ES |
dc.description.references | R. A. Sánchez-Delgado , Organometallic Modeling of the Hydrodesulfurization and Hydrodenitrogenation Reactions , Springer Netherlands, Kluwer , Dordrecht , 2002 | es_ES |
dc.description.references | Plantenga, F. L., Cerfontain, R., Eijsbouts, S., van Houtert, F., Anderson, G. H., Miseo, S., … Inoue, Y. (2003). 89 «Nebula»: A hydroprocessing catalyst with breakthrough activity. Studies in Surface Science and Catalysis, 407-410. doi:10.1016/s0167-2991(03)80246-x | es_ES |
dc.description.references | Eijsbouts, S., Mayo, S. W., & Fujita, K. (2007). Unsupported transition metal sulfide catalysts: From fundamentals to industrial application. Applied Catalysis A: General, 322, 58-66. doi:10.1016/j.apcata.2007.01.008 | es_ES |
dc.description.references | Yoosuk, B., Song, C., Kim, J. H., Ngamcharussrivichai, C., & Prasassarakich, P. (2010). Effects of preparation conditions in hydrothermal synthesis of highly active unsupported NiMo sulfide catalysts for simultaneous hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. Catalysis Today, 149(1-2), 52-61. doi:10.1016/j.cattod.2009.05.001 | es_ES |
dc.description.references | Yoosuk, B., Tumnantong, D., & Prasassarakich, P. (2012). Amorphous unsupported Ni–Mo sulfide prepared by one step hydrothermal method for phenol hydrodeoxygenation. Fuel, 91(1), 246-252. doi:10.1016/j.fuel.2011.08.001 | es_ES |
dc.description.references | Wang, W., Zhang, K., Li, L., Wu, K., Liu, P., & Yang, Y. (2014). Synthesis of Highly Active Co–Mo–S Unsupported Catalysts by a One-Step Hydrothermal Method for p-Cresol Hydrodeoxygenation. Industrial & Engineering Chemistry Research, 53(49), 19001-19009. doi:10.1021/ie5032698 | es_ES |
dc.description.references | Itthibenchapong, V., Ratanatawanate, C., Oura, M., & Faungnawakij, K. (2015). A facile and low-cost synthesis of MoS2 for hydrodeoxygenation of phenol. Catalysis Communications, 68, 31-35. doi:10.1016/j.catcom.2015.04.024 | es_ES |
dc.description.references | Wang, W., Li, L., Wu, K., Zhu, G., Tan, S., Li, W., & Yang, Y. (2015). Hydrothermal synthesis of bimodal mesoporous MoS2 nanosheets and their hydrodeoxygenation properties. RSC Advances, 5(76), 61799-61807. doi:10.1039/c5ra09690a | es_ES |
dc.description.references | Wang, W., Li, L., Wu, K., Zhang, K., Jie, J., & Yang, Y. (2015). Preparation of Ni–Mo–S catalysts by hydrothermal method and their hydrodeoxygenation properties. Applied Catalysis A: General, 495, 8-16. doi:10.1016/j.apcata.2015.01.041 | es_ES |
dc.description.references | Wang, W., Li, L., Tan, S., Wu, K., Zhu, G., Liu, Y., … Yang, Y. (2016). Preparation of NiS2//MoS2 catalysts by two-step hydrothermal method and their enhanced activity for hydrodeoxygenation of p-cresol. Fuel, 179, 1-9. doi:10.1016/j.fuel.2016.03.068 | es_ES |
dc.description.references | Wang, W., Wu, K., Li, L., Tan, S., Zhu, G., Li, W., … Yang, Y. (2016). Microwave-assisted hydrothermal synthesis of NiS and their promotional effect for the hydrodeoxygenation of p-cresol on MoS2. Catalysis Communications, 74, 60-64. doi:10.1016/j.catcom.2015.10.032 | es_ES |
dc.description.references | Wang, W., Zhu, G., Li, L., Tan, S., Wu, K., Zhang, X., & Yang, Y. (2016). Facile hydrothermal synthesis of flower-like Co–Mo–S catalysts and their high activities in the hydrodeoxygenation of p-cresol and hydrodesulfurization of benzothiophene. Fuel, 174, 1-8. doi:10.1016/j.fuel.2016.01.074 | es_ES |
dc.description.references | Sorribes, I., Liu, L., & Corma, A. (2017). Nanolayered Co–Mo–S Catalysts for the Chemoselective Hydrogenation of Nitroarenes. ACS Catalysis, 7(4), 2698-2708. doi:10.1021/acscatal.7b00170 | es_ES |
dc.description.references | Sorribes, I., Liu, L., Doménech-Carbó, A., & Corma, A. (2018). Nanolayered Cobalt–Molybdenum Sulfides as Highly Chemo- and Regioselective Catalysts for the Hydrogenation of Quinoline Derivatives. ACS Catalysis, 8(5), 4545-4557. doi:10.1021/acscatal.7b04260 | es_ES |
dc.description.references | TOPSOE, H. (1981). In situ M�ssbauer emission spectroscopy studies of unsupported and supported sulfided Co$z.sbnd;Mo hydrodesulfurization catalysts: Evidence for and nature of a Co$z.sbnd;Mo$z.sbnd;S phase. Journal of Catalysis, 68(2), 433-452. doi:10.1016/0021-9517(81)90114-7 | es_ES |
dc.description.references | WIVEL, C. (1981). On the catalytic significance of a Co$z.sbnd;Mo$z.sbnd;S phase in Co$z.sbnd;Mo/Al2O3 hydrodesulfurization catalysts: Combined in situ M�ssbauer emission spectroscopy and activity studies. Journal of Catalysis, 68(2), 453-463. doi:10.1016/0021-9517(81)90115-9 | es_ES |
dc.description.references | Clausen, B. S., Topsoe, H., Candia, R., Villadsen, J., Lengeler, B., Als-Nielsen, J., & Christensen, F. (1981). Extended x-ray absorption fine structure study of the cobalt-molybdenum hydrodesulfurization catalysts. The Journal of Physical Chemistry, 85(25), 3868-3872. doi:10.1021/j150625a032 | es_ES |
dc.description.references | Breysse, M., Bennett, B. A., Chadwick, D., & Vrinat, M. (2010). Structure and HDS Activity of Co-Mo Catalysts: A Comparison Of Alumina and Carbon Supports. Bulletin des Sociétés Chimiques Belges, 90(12), 1271-1278. doi:10.1002/bscb.19810901211 | es_ES |
dc.description.references | TOPSOE, N. (1983). Characterization of the structures and active sites in sulfided Co$z.sbnd;Mo/Al2O3 and Ni$z.sbnd;Mo/Al2O3 catalysts by NO chemisorption. Journal of Catalysis, 84(2), 386-401. doi:10.1016/0021-9517(83)90010-6 | es_ES |
dc.description.references | Kasztelan, S., Toulhoat, H., Grimblot, J., & Bonnelle, J. P. (1984). A geometrical model of the active phase of hydrotreating catalysts. Applied Catalysis, 13(1), 127-159. doi:10.1016/s0166-9834(00)83333-3 | es_ES |
dc.description.references | Topsøe, H., & Clausen, B. S. (1986). Active sites and support effects in hydrodesulfurization catalysts. Applied Catalysis, 25(1-2), 273-293. doi:10.1016/s0166-9834(00)81246-4 | es_ES |
dc.description.references | Byskov, L. S., Nørskov, J. K., Clausen, B. S., & Topsøe, H. (1999). DFT Calculations of Unpromoted and Promoted MoS2-Based Hydrodesulfurization Catalysts. Journal of Catalysis, 187(1), 109-122. doi:10.1006/jcat.1999.2598 | es_ES |
dc.description.references | Schweiger, H., Raybaud, P., & Toulhoat, H. (2002). Promoter Sensitive Shapes of Co(Ni)MoS Nanocatalysts in Sulfo-Reductive Conditions. Journal of Catalysis, 212(1), 33-38. doi:10.1006/jcat.2002.3737 | es_ES |
dc.description.references | Lauritsen, J. V., Bollinger, M. V., Lægsgaard, E., Jacobsen, K. W., Nørskov, J. K., Clausen, B. S., … Besenbacher, F. (2004). Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts. Journal of Catalysis, 221(2), 510-522. doi:10.1016/j.jcat.2003.09.015 | es_ES |
dc.description.references | Topsøe, H. (2007). The role of Co–Mo–S type structures in hydrotreating catalysts. Applied Catalysis A: General, 322, 3-8. doi:10.1016/j.apcata.2007.01.002 | es_ES |
dc.description.references | LAURITSEN, J., KIBSGAARD, J., OLESEN, G., MOSES, P., HINNEMANN, B., HELVEG, S., … LAGSGAARD, E. (2007). Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts. Journal of Catalysis, 249(2), 220-233. doi:10.1016/j.jcat.2007.04.013 | es_ES |
dc.description.references | Berhault, G., Perez De la Rosa, M., Mehta, A., Yácaman, M. J., & Chianelli, R. R. (2008). The single-layered morphology of supported MoS2-based catalysts—The role of the cobalt promoter and its effects in the hydrodesulfurization of dibenzothiophene. Applied Catalysis A: General, 345(1), 80-88. doi:10.1016/j.apcata.2008.04.034 | es_ES |
dc.description.references | Besenbacher, F., Brorson, M., Clausen, B. S., Helveg, S., Hinnemann, B., Kibsgaard, J., … Topsøe, H. (2008). Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: Insight into mechanistic, structural and particle size effects. Catalysis Today, 130(1), 86-96. doi:10.1016/j.cattod.2007.08.009 | es_ES |
dc.description.references | Gandubert, A. D., Krebs, E., Legens, C., Costa, D., Guillaume, D., & Raybaud, P. (2008). Optimal promoter edge decoration of CoMoS catalysts: A combined theoretical and experimental study. Catalysis Today, 130(1), 149-159. doi:10.1016/j.cattod.2007.06.041 | es_ES |
dc.description.references | Krebs, E., Silvi, B., & Raybaud, P. (2008). Mixed sites and promoter segregation: A DFT study of the manifestation of Le Chatelier’s principle for the Co(Ni)MoS active phase in reaction conditions. Catalysis Today, 130(1), 160-169. doi:10.1016/j.cattod.2007.06.081 | es_ES |
dc.description.references | Kibsgaard, J., Tuxen, A., Knudsen, K. G., Brorson, M., Topsøe, H., Lægsgaard, E., … Besenbacher, F. (2010). Comparative atomic-scale analysis of promotional effects by late 3d-transition metals in MoS2 hydrotreating catalysts. Journal of Catalysis, 272(2), 195-203. doi:10.1016/j.jcat.2010.03.018 | es_ES |
dc.description.references | Zhu, Y., Ramasse, Q. M., Brorson, M., Moses, P. G., Hansen, L. P., Kisielowski, C. F., & Helveg, S. (2014). Visualizing the Stoichiometry of Industrial-Style Co-Mo-S Catalysts with Single-Atom Sensitivity. Angewandte Chemie International Edition, 53(40), 10723-10727. doi:10.1002/anie.201405690 | es_ES |
dc.description.references | F. Scholz , U.Schröder , R.Gulaboski and A.Doménech-Carbó , Electrochemistry of Immobilized Particles and Droplets , Springer , Berlin-Heidelberg , 2nd edn, 2014 | es_ES |
dc.description.references | Doménech-Carbó, A., Labuda, J., & Scholz, F. (2012). Electroanalytical chemistry for the analysis of solids: Characterization and classification (IUPAC Technical Report). Pure and Applied Chemistry, 85(3), 609-631. doi:10.1351/pac-rep-11-11-13 | es_ES |
dc.description.references | McCullough, L. R., Childers, D. J., Watson, R. A., Kilos, B. A., Barton, D. G., Weitz, E., … Notestein, J. M. (2017). Acceptorless Dehydrogenative Coupling of Neat Alcohols Using Group VI Sulfide Catalysts. ACS Sustainable Chemistry & Engineering, 5(6), 4890-4896. doi:10.1021/acssuschemeng.7b00303 | es_ES |
dc.description.references | McCullough, L. R., Cheng, E. S., Gosavi, A. A., Kilos, B. A., Barton, D. G., Weitz, E., … Notestein, J. M. (2018). Gas phase acceptorless dehydrogenative coupling of ethanol over bulk MoS2 and spectroscopic measurement of structural disorder. Journal of Catalysis, 366, 159-166. doi:10.1016/j.jcat.2018.07.039 | es_ES |
dc.description.references | PIÉPLU, A., SAUR, O., LAVALLEY, J.-C., LEGENDRE, O., & NÉDEZ, C. (1998). Claus Catalysis and H2S Selective Oxidation. Catalysis Reviews, 40(4), 409-450. doi:10.1080/01614949808007113 | es_ES |
dc.description.references | Eow, J. S. (2002). Recovery of sulfur from sour acid gas: A review of the technology. Environmental Progress, 21(3), 143-162. doi:10.1002/ep.670210312 | es_ES |
dc.description.references | Huang, H., Yu, Y., & Chung, K. H. (2009). Recovery of Hydrogen and Sulfur by Indirect Electrolysis of Hydrogen Sulfide. Energy & Fuels, 23(9), 4420-4425. doi:10.1021/ef900424a | es_ES |
dc.description.references | Singh, G., Nakade, P. G., Chetia, D., Jha, P., Mondal, U., Kumari, S., & Sen, S. (2016). Kinetics and mechanism of phase transfer catalyzed synthesis of aromatic thioethers by H 2 S-rich methyldiethanolamine. Journal of Industrial and Engineering Chemistry, 37, 190-197. doi:10.1016/j.jiec.2016.03.022 | es_ES |