- -

Nanolayered cobalt-molybdenum sulphides (Co-Mo-S) catalyse borrowing hydrogen C-S bond formation reactions of thiols or H2S with alcohols

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nanolayered cobalt-molybdenum sulphides (Co-Mo-S) catalyse borrowing hydrogen C-S bond formation reactions of thiols or H2S with alcohols

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sorribes-Terrés, Iván es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2020-11-13T04:33:03Z
dc.date.available 2020-11-13T04:33:03Z
dc.date.issued 2019-03-14 es_ES
dc.identifier.issn 2041-6520 es_ES
dc.identifier.uri http://hdl.handle.net/10251/155013
dc.description.abstract [EN] Nanolayered cobalt-molybdenum sulphide (Co-Mo-S) materials have been established as excellent catalysts for C-S bond construction. These catalysts allow for the preparation of a broad range of thioethers in good to excellent yields from structurally diverse thiols and readily available primary as well as secondary alcohols. Chemoselectivity in the presence of sensitive groups such as double bonds, nitriles, carboxylic esters and halogens has been demonstrated. It is also shown that the reaction takes place through a hydrogen-autotransfer (borrowing hydrogen) mechanism that involves Co-Mo-Smediated dehydrogenation and hydrogenation reactions. A novel catalytic protocol based on the thioetherification of alcohols with hydrogen sulphide (H2S) to furnish symmetrical thioethers has also been developed using these earth-abundant metal-based sulphide catalysts. es_ES
dc.description.sponsorship Financial support by the Spanish Government-MINECO through the program "Severo Ochoa" (SEV-2016-0683) is gratefully acknowledged. I. S. also acknowledges the Vice-Rectorate for Research, Innovation and Transfer of the Universitat Politecnica de Valencia (UPV) for a postdoctoral fellowship and the Spanish Government-MINECO for a "Juan de la Cierva-Incorporacion" fellowship. The authors also acknowledge the Microscopy Service of the UPV and Dr Jose Maria Moreno for kind help with TEM and STEM measurements. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Science es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Nanolayered cobalt-molybdenum sulphides (Co-Mo-S) catalyse borrowing hydrogen C-S bond formation reactions of thiols or H2S with alcohols es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c8sc05782f es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Sorribes-Terrés, I.; Corma Canós, A. (2019). Nanolayered cobalt-molybdenum sulphides (Co-Mo-S) catalyse borrowing hydrogen C-S bond formation reactions of thiols or H2S with alcohols. Chemical Science. 10(10):3130-3142. https://doi.org/10.1039/c8sc05782f es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c8sc05782f es_ES
dc.description.upvformatpinicio 3130 es_ES
dc.description.upvformatpfin 3142 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 10 es_ES
dc.identifier.pmid 30996896 es_ES
dc.identifier.pmcid PMC6429612 es_ES
dc.relation.pasarela S\409955 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references E. Block , Reactions of Organosulfur Compounds , Academic Press , New York , 1978 es_ES
dc.description.references M. E. Peach , in The Chemistry of the Thiol Group , ed. S. Patai , John Wiley & Sons , London , 1979 , pp. 721–723 es_ES
dc.description.references F. Bernardi , I. G.Csizmadia and A.Mangini , Organic Sulfur Chemistry. Theoretical and Experimental Advances , Elsevier , Amsterdam , 1985 es_ES
dc.description.references R. J. Cremlyn , An Introduction to Organosulfur Chemistry , John Wiley & Sons , New York , 1996 es_ES
dc.description.references Kondo, T., & Mitsudo, T. (2000). Metal-Catalyzed Carbon−Sulfur Bond Formation. Chemical Reviews, 100(8), 3205-3220. doi:10.1021/cr9902749 es_ES
dc.description.references Liu, H., & Jiang, X. (2013). Transfer of Sulfur: From Simple to Diverse. Chemistry - An Asian Journal, 8(11), 2546-2563. doi:10.1002/asia.201300636 es_ES
dc.description.references Artico, M., Silvestri, R., Pagnozzi, E., Bruno, B., Novellino, E., Greco, G., … La Colla, P. (2000). Structure-Based Design, Synthesis, and Biological Evaluation of Novel Pyrrolyl Aryl Sulfones:  HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors Active at Nanomolar Concentrations. Journal of Medicinal Chemistry, 43(9), 1886-1891. doi:10.1021/jm9901125 es_ES
dc.description.references Sun, Z.-Y., Botros, E., Su, A.-D., Kim, Y., Wang, E., Baturay, N. Z., & Kwon, C.-H. (2000). Sulfoxide-Containing Aromatic Nitrogen Mustards as Hypoxia-Directed Bioreductive Cytotoxins. Journal of Medicinal Chemistry, 43(22), 4160-4168. doi:10.1021/jm9904957 es_ES
dc.description.references Wang, Y., Chackalamannil, S., Chang, W., Greenlee, W., Ruperto, V., Duffy, R. A., … Lachowicz, J. E. (2001). Design and synthesis of ether analogues as potent and selective M2 muscarinic receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 11(7), 891-894. doi:10.1016/s0960-894x(01)00100-7 es_ES
dc.description.references Clader, J. W., Billard, W., Binch, H., Chen, L.-Y., Crosby, G., Duffy, R. A., … Greenlee, W. J. (2004). Muscarinic M2 antagonists: anthranilamide derivatives with exceptional selectivity and in vivo activity. Bioorganic & Medicinal Chemistry, 12(2), 319-326. doi:10.1016/j.bmc.2003.11.005 es_ES
dc.description.references Kharasch, N., Potempa, S. J., & Wehrmeister, H. L. (1946). The Sulfenic Acids and their Derivatives. Chemical Reviews, 39(2), 269-332. doi:10.1021/cr60123a004 es_ES
dc.description.references S. Patai , The Chemistry of the Functional Groups – The Chemistry of the Thiol Group , Wiley , London , 1974 es_ES
dc.description.references Herriott, A. W., & Picker, D. (1975). Phase transfer catalysis. Evaluation of catalysis. Journal of the American Chemical Society, 97(9), 2345-2349. doi:10.1021/ja00842a006 es_ES
dc.description.references SULFIDE SYNTHESIS IN PREPARATION OF DIALKYL AND ALKYL ARYL SULFIDES: NEOPENTYL PHENYL SULFIDE. (1978). Organic Syntheses, 58, 143. doi:10.15227/orgsyn.058.0143 es_ES
dc.description.references Boscato, J. F., Catala, J. M., Franta, E., & Brossas, J. (1980). Action of elementary sulfur onto carbanions : a new route to dialkylpolysulfides. Tetrahedron Letters, 21(16), 1519-1520. doi:10.1016/s0040-4039(00)92762-x es_ES
dc.description.references Kosugi, M., Ogata, T., Terada, M., Sano, H., & Migita, T. (1985). Palladium-catalyzed Reaction of Stannyl Sulfide with Aryl Bromide. Preparation of Aryl Sulfide. Bulletin of the Chemical Society of Japan, 58(12), 3657-3658. doi:10.1246/bcsj.58.3657 es_ES
dc.description.references Hundscheid, F. J. A., Tandon, V. K., Rouwette, P. H. F. M., & van Leusen, A. M. (1987). Synthesis of chiral sulfonylmethyl isocyanides, and comparison of their propensities in asymmetric induction reactions with acetophenones1. Tetrahedron, 43(21), 5073-5088. doi:10.1016/s0040-4020(01)87684-5 es_ES
dc.description.references Harpp, D. N., & Gingras, M. (1988). Organosulfur chemistry. Part 55. Fluorodestannylation. A powerful technique to liberate anions of oxygen, sulfur, selenium, and carbon. Journal of the American Chemical Society, 110(23), 7737-7745. doi:10.1021/ja00231a025 es_ES
dc.description.references Gingras, M., Chan, T. H., & Harpp, D. N. (1990). New methodologies: fluorodemetalation of organogermanium, -tin, and -lead compounds. Applications with organometallic sulfides to produce highly active anions and spectroscopic evidence for pentavalent intermediates in substitution at tin. The Journal of Organic Chemistry, 55(7), 2078-2090. doi:10.1021/jo00294a021 es_ES
dc.description.references Li, C.-J., & Harpp, D. N. (1992). A convenient preparation of arylthiostannanes. Tetrahedron Letters, 33(48), 7293-7294. doi:10.1016/s0040-4039(00)60169-7 es_ES
dc.description.references Yin, J., & Pidgeon, C. (1997). A simple and efficient method for preparation of unsymmetrical sulfides. Tetrahedron Letters, 38(34), 5953-5954. doi:10.1016/s0040-4039(97)01352-x es_ES
dc.description.references Malmström, J., Gupta, V., & Engman, L. (1998). Novel Antioxidants:  Unexpected Rearrangements in the Radical Cyclization Approach to 2,3-Dihydrobenzo[b]thiophene-5-ol Derivatives. The Journal of Organic Chemistry, 63(10), 3318-3323. doi:10.1021/jo972087l es_ES
dc.description.references Ichiishi, N., Malapit, C. A., Woźniak, Ł., & Sanford, M. S. (2017). Palladium- and Nickel-Catalyzed Decarbonylative C–S Coupling to Convert Thioesters to Thioethers. Organic Letters, 20(1), 44-47. doi:10.1021/acs.orglett.7b03305 es_ES
dc.description.references Shen, C., Zhang, P., Sun, Q., Bai, S., Hor, T. S. A., & Liu, X. (2015). Recent advances in C–S bond formation via C–H bond functionalization and decarboxylation. Chemical Society Reviews, 44(1), 291-314. doi:10.1039/c4cs00239c es_ES
dc.description.references Qiao, Z., & Jiang, X. (2017). Recent developments in sulfur–carbon bond formation reaction involving thiosulfates. Organic & Biomolecular Chemistry, 15(9), 1942-1946. doi:10.1039/c6ob02833k es_ES
dc.description.references Page, P. C. B., Klair, S. S., Brown, M. P., Harding, M. M., Smith, C. S., Maginn, S. J., & Mulley, S. (1988). Carbon—sulphur bond formation catalysed by bis(diphenylphosphino)-methane complexes of platinum (II). Tetrahedron Letters, 29(35), 4477-4480. doi:10.1016/s0040-4039(00)80527-4 es_ES
dc.description.references Beletskaya, I. P., & Cheprakov, A. V. (2004). Copper in cross-coupling reactions. Coordination Chemistry Reviews, 248(21-24), 2337-2364. doi:10.1016/j.ccr.2004.09.014 es_ES
dc.description.references Fernández-Rodríguez, M. A., Shen, Q., & Hartwig, J. F. (2006). A General and Long-Lived Catalyst for the Palladium-Catalyzed Coupling of Aryl Halides with Thiols. Journal of the American Chemical Society, 128(7), 2180-2181. doi:10.1021/ja0580340 es_ES
dc.description.references Arisawa, M., Suzuki, T., Ishikawa, T., & Yamaguchi, M. (2008). Rhodium-Catalyzed Substitution Reaction of Aryl Fluorides with Disulfides:p-Orientation in the Polyarylthiolation of Polyfluorobenzenes. Journal of the American Chemical Society, 130(37), 12214-12215. doi:10.1021/ja8049996 es_ES
dc.description.references Correa, A., Carril, M., & Bolm, C. (2008). Iron-Catalyzed S-Arylation of Thiols with Aryl Iodides. Angewandte Chemie International Edition, 47(15), 2880-2883. doi:10.1002/anie.200705668 es_ES
dc.description.references Wu, J.-R., Lin, C.-H., & Lee, C.-F. (2009). Iron-catalyzed thioetherification of thiols with aryl iodides. Chemical Communications, (29), 4450. doi:10.1039/b907362k es_ES
dc.description.references Fernández-Rodríguez, M. A., & Hartwig, J. F. (2010). One-Pot Synthesis of Unsymmetrical Diaryl Thioethers by Palladium-Catalyzed Coupling of Two Aryl Bromides and a Thiol Surrogate. Chemistry - A European Journal, 16(8), 2355-2359. doi:10.1002/chem.200902313 es_ES
dc.description.references Beletskaya, I. P., & Ananikov, V. P. (2011). Transition-Metal-Catalyzed C−S, C−Se, and C−Te Bond Formation via Cross-Coupling and Atom-Economic Addition Reactions. Chemical Reviews, 111(3), 1596-1636. doi:10.1021/cr100347k es_ES
dc.description.references Sayah, M., & Organ, M. G. (2011). Carbon-Sulfur Bond Formation of Challenging Substrates at Low Temperature by Using Pd-PEPPSI-IPent. Chemistry - A European Journal, 17(42), 11719-11722. doi:10.1002/chem.201102158 es_ES
dc.description.references Lan, M.-T., Wu, W.-Y., Huang, S.-H., Luo, K.-L., & Tsai, F.-Y. (2011). Reusable and efficient CoCl2·6H2O/cationic 2,2’-bipyridyl system-catalyzed S-arylation of aryl halides with thiols in water under air. RSC Advances, 1(9), 1751. doi:10.1039/c1ra00406a es_ES
dc.description.references Cabrero-Antonino, J. R., García, T., Rubio-Marqués, P., Vidal-Moya, J. A., Leyva-Pérez, A., Al-Deyab, S. S., … Corma, A. (2011). Synthesis of Organic−Inorganic Hybrid Solids with Copper Complex Framework and Their Catalytic Activity for the S-Arylation and the Azide−Alkyne Cycloaddition Reactions. ACS Catalysis, 1(2), 147-158. doi:10.1021/cs100086y es_ES
dc.description.references Baig, R. B. N., & Varma, R. S. (2012). A highly active and magnetically retrievable nanoferrite–DOPA–copper catalyst for the coupling of thiophenols with aryl halides. Chemical Communications, 48(20), 2582. doi:10.1039/c2cc17283f es_ES
dc.description.references Liao, Y., Jiang, P., Chen, S., Qi, H., & Deng, G.-J. (2013). Iodine-catalyzed efficient 2-arylsulfanylphenol formation from thiols and cyclohexanones. Green Chemistry, 15(12), 3302. doi:10.1039/c3gc41671b es_ES
dc.description.references Kamal, A., Srinivasulu, V., Murty, J. N. S. R. C., Shankaraiah, N., Nagesh, N., Srinivasa Reddy, T., & Subba Rao, A. V. (2013). Copper Oxide Nanoparticles Supported on Graphene Oxide- Catalyzed S-Arylation: An Efficient and Ligand-Free Synthesis of Aryl Sulfides. Advanced Synthesis & Catalysis, 355(11-12), 2297-2307. doi:10.1002/adsc.201300416 es_ES
dc.description.references Timpa, S. D., Pell, C. J., & Ozerov, O. V. (2014). A Well-Defined (POCOP)Rh Catalyst for the Coupling of Aryl Halides with Thiols. Journal of the American Chemical Society, 136(42), 14772-14779. doi:10.1021/ja505576g es_ES
dc.description.references Lee, C.-F., Liu, Y.-C., & Badsara, S. S. (2014). Transition-Metal-Catalyzed CS Bond Coupling Reaction. Chemistry - An Asian Journal, 9(3), 706-722. doi:10.1002/asia.201301500 es_ES
dc.description.references Thomas, A. M., Asha, S., Sindhu, K. S., & Anilkumar, G. (2015). A general and inexpensive protocol for the Cu-catalyzed C–S cross-coupling reaction between aryl halides and thiols. Tetrahedron Letters, 56(47), 6560-6564. doi:10.1016/j.tetlet.2015.10.014 es_ES
dc.description.references Oderinde, M. S., Frenette, M., Robbins, D. W., Aquila, B., & Johannes, J. W. (2016). Photoredox Mediated Nickel Catalyzed Cross-Coupling of Thiols With Aryl and Heteroaryl Iodides via Thiyl Radicals. Journal of the American Chemical Society, 138(6), 1760-1763. doi:10.1021/jacs.5b11244 es_ES
dc.description.references Kanemoto, K., Sugimura, Y., Shimizu, S., Yoshida, S., & Hosoya, T. (2017). Rhodium-catalyzed odorless synthesis of diaryl sulfides from borylarenes and S-aryl thiosulfonates. Chemical Communications, 53(77), 10640-10643. doi:10.1039/c7cc05868c es_ES
dc.description.references Chen, C.-W., Chen, Y.-L., Reddy, D. M., Du, K., Li, C.-E., Shih, B.-H., … Lee, C.-F. (2017). CuI/Oxalic Diamide-Catalyzed Cross-Coupling of Thiols with Aryl Bromides and Chlorides. Chemistry - A European Journal, 23(42), 10087-10091. doi:10.1002/chem.201701671 es_ES
dc.description.references Lian, Z., Bhawal, B. N., Yu, P., & Morandi, B. (2017). Palladium-catalyzed carbon-sulfur or carbon-phosphorus bond metathesis by reversible arylation. Science, 356(6342), 1059-1063. doi:10.1126/science.aam9041 es_ES
dc.description.references Fang, Y., Rogge, T., Ackermann, L., Wang, S.-Y., & Ji, S.-J. (2018). Nickel-catalyzed reductive thiolation and selenylation of unactivated alkyl bromides. Nature Communications, 9(1). doi:10.1038/s41467-018-04646-2 es_ES
dc.description.references Jones, K. D., Power, D. J., Bierer, D., Gericke, K. M., & Stewart, S. G. (2017). Nickel Phosphite/Phosphine-Catalyzed C–S Cross-Coupling of Aryl Chlorides and Thiols. Organic Letters, 20(1), 208-211. doi:10.1021/acs.orglett.7b03560 es_ES
dc.description.references Kumar, P., Pandey, R. K., & Hegde, V. R. (1999). Anti-Markovnikov Addition of Thiols Across Double Bonds Catalyzed by H-Rho-Zeolite. Synlett, 1999(12), 1921-1922. doi:10.1055/s-1999-2976 es_ES
dc.description.references Kanagasabapathy, S., Sudalai, A., & Benicewicz, B. C. (2001). Montmorillonite K 10-catalyzed regioselective addition of thiols and thiobenzoic acids onto olefins: an efficient synthesis of dithiocarboxylic esters. Tetrahedron Letters, 42(23), 3791-3794. doi:10.1016/s0040-4039(01)00570-6 es_ES
dc.description.references Morita, N., & Krause, N. (2006). The First Gold-Catalyzed CS Bond Formation: Cycloisomerization of α-Thioallenes to 2,5-Dihydrothiophenes. Angewandte Chemie International Edition, 45(12), 1897-1899. doi:10.1002/anie.200503846 es_ES
dc.description.references Kawatsura, M., Komatsu, Y., Yamamoto, M., Hayase, S., & Itoh, T. (2007). Enantioselective C–S bond formation by iron/Pybox catalyzed Michael addition of thiols to (E)-3-crotonoyloxazolidin-2-one. Tetrahedron Letters, 48(37), 6480-6482. doi:10.1016/j.tetlet.2007.07.053 es_ES
dc.description.references Banerjee, S., Das, J., Alvarez, R. P., & Santra, S. (2010). Silicananoparticles as a reusable catalyst: a straightforward route for the synthesis of thioethers, thioesters, vinyl thioethers and thio-Michael adducts under neutral reaction conditions. New J. Chem., 34(2), 302-306. doi:10.1039/b9nj00399a es_ES
dc.description.references Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2012). Iron-Catalysed Markovnikov Hydrothiolation of Styrenes. Advanced Synthesis & Catalysis, 354(4), 678-687. doi:10.1002/adsc.201100731 es_ES
dc.description.references Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2013). Iron(III) Triflimide as a Catalytic Substitute for Gold(I) in Hydroaddition Reactions to Unsaturated Carbon-Carbon Bonds. Chemistry - A European Journal, 19(26), 8627-8633. doi:10.1002/chem.201300386 es_ES
dc.description.references Zeng, X. (2013). Recent Advances in Catalytic Sequential Reactions Involving Hydroelement Addition to Carbon–Carbon Multiple Bonds. Chemical Reviews, 113(8), 6864-6900. doi:10.1021/cr400082n es_ES
dc.description.references Kuciński, K., Pawluć, P., & Hreczycho, G. (2015). Scandium(III) Triflate-Catalyzedanti-Markovnikov Hydrothiolation of Functionalized Olefins. Advanced Synthesis & Catalysis, 357(18), 3936-3942. doi:10.1002/adsc.201500720 es_ES
dc.description.references Kumar, R., Saima, Shard, A., Andhare, N. H., Richa, & Sinha, A. K. (2014). Thiol-Ene «Click» Reaction Triggered by Neutral Ionic Liquid: The «Ambiphilic» Character of [hmim]Br in the Regioselective Nucleophilic Hydrothiolation. Angewandte Chemie International Edition, 54(3), 828-832. doi:10.1002/anie.201408721 es_ES
dc.description.references Pérez, M., Mahdi, T., Hounjet, L. J., & Stephan, D. W. (2015). Electrophilic phosphonium cations catalyze hydroarylation and hydrothiolation of olefins. Chemical Communications, 51(56), 11301-11304. doi:10.1039/c5cc03572d es_ES
dc.description.references Palacios, L., Di Giuseppe, A., Artigas, M. J., Polo, V., Lahoz, F. J., Castarlenas, R., … Oro, L. A. (2016). Mechanistic insight into the pyridine enhanced α-selectivity in alkyne hydrothiolation catalysed by quinolinolate–rhodium(i)–N-heterocyclic carbene complexes. Catalysis Science & Technology, 6(24), 8548-8561. doi:10.1039/c6cy01884j es_ES
dc.description.references Kennemur, J. L., Kortman, G. D., & Hull, K. L. (2016). Rhodium-Catalyzed Regiodivergent Hydrothiolation of Allyl Amines and Imines. Journal of the American Chemical Society, 138(36), 11914-11919. doi:10.1021/jacs.6b07142 es_ES
dc.description.references Palacios, L., Meheut, Y., Galiana-Cameo, M., Artigas, M. J., Di Giuseppe, A., Lahoz, F. J., … Oro, L. A. (2017). Design of Highly Selective Alkyne Hydrothiolation RhI-NHC Catalysts: Carbonyl-Triggered Nonoxidative Mechanism. Organometallics, 36(11), 2198-2207. doi:10.1021/acs.organomet.7b00251 es_ES
dc.description.references Cabrero-Antonino, J. R., Tejeda-Serrano, M., Quesada, M., Vidal-Moya, J. A., Leyva-Pérez, A., & Corma, A. (2017). Bimetallic nanosized solids with acid and redox properties for catalytic activation of C–C and C–H bonds. Chemical Science, 8(1), 689-696. doi:10.1039/c6sc03335k es_ES
dc.description.references Martin, M. T., Thomas, A. M., & York, D. G. (2002). Direct synthesis of thioethers from sulfonyl chlorides and activated alcohols. Tetrahedron Letters, 43(12), 2145-2147. doi:10.1016/s0040-4039(02)00218-6 es_ES
dc.description.references Saxena, A., Kumar, A., & Mozumdar, S. (2007). Ni-nanoparticles: An efficient green catalyst for chemo-selective oxidative coupling of thiols. Journal of Molecular Catalysis A: Chemical, 269(1-2), 35-40. doi:10.1016/j.molcata.2006.12.042 es_ES
dc.description.references Bandgar, B. P., Gawande, S. S., & Muley, D. B. (2010). Silica supported perchloric acid (HClO4-SiO2): a green, reusable, and highly efficient heterogeneous catalyst for the synthesis of thioethers under solvent-free conditions at room temperature. Green Chemistry Letters and Reviews, 3(1), 49-54. doi:10.1080/17518250903447118 es_ES
dc.description.references Bahrami, K., Khodaei, M., & Khodadoustan, N. (2011). TAPC-Catalyzed Synthesis of Thioethers from Thiols and Alcohols. Synlett, 2011(15), 2206-2210. doi:10.1055/s-0030-1261206 es_ES
dc.description.references Basu, B., Kundu, S., & Sengupta, D. (2013). Graphene oxide as a carbocatalyst: the first example of a one-pot sequential dehydration–hydrothiolation of secondary aryl alcohols. RSC Advances, 3(44), 22130. doi:10.1039/c3ra44712j es_ES
dc.description.references Hikawa, H., Toyomoto, M., Kikkawa, S., & Azumaya, I. (2015). Direct substitution of benzylic alcohols with electron-deficient benzenethiols via π-benzylpalladium(ii) in water. Organic & Biomolecular Chemistry, 13(47), 11459-11465. doi:10.1039/c5ob01717c es_ES
dc.description.references Hikawa, H., Machino, Y., Toyomoto, M., Kikkawa, S., & Azumaya, I. (2016). Cationic palladium(ii)-catalyzed dehydrative nucleophilic substitutions of benzhydryl alcohols with electron-deficient benzenethiols in water. Organic & Biomolecular Chemistry, 14(29), 7038-7045. doi:10.1039/c6ob01140c es_ES
dc.description.references Santoro, F., Mariani, M., Zaccheria, F., Psaro, R., & Ravasio, N. (2016). Selective synthesis of thioethers in the presence of a transition-metal-free solid Lewis acid. Beilstein Journal of Organic Chemistry, 12, 2627-2635. doi:10.3762/bjoc.12.259 es_ES
dc.description.references Hamid, M. H. S. A., Slatford, P. A., & Williams, J. M. J. (2007). Borrowing Hydrogen in the Activation of Alcohols. Advanced Synthesis & Catalysis, 349(10), 1555-1575. doi:10.1002/adsc.200600638 es_ES
dc.description.references Nixon, T. D., Whittlesey, M. K., & Williams, J. M. J. (2009). Transition metal catalysed reactions of alcohols using borrowing hydrogen methodology. Dalton Trans., (5), 753-762. doi:10.1039/b813383b es_ES
dc.description.references Hollmann, D. (2014). Advances in Asymmetric Borrowing Hydrogen Catalysis. ChemSusChem, 7(9), 2411-2413. doi:10.1002/cssc.201402320 es_ES
dc.description.references Muzart, J. (2015). Pd-Catalyzed Hydrogen-Transfer Reactions from Alcohols to C=C, C=O, and C=N Bonds. European Journal of Organic Chemistry, 2015(26), 5693-5707. doi:10.1002/ejoc.201500401 es_ES
dc.description.references Corma, A., Navas, J., & Sabater, M. J. (2018). Advances in One-Pot Synthesis through Borrowing Hydrogen Catalysis. Chemical Reviews, 118(4), 1410-1459. doi:10.1021/acs.chemrev.7b00340 es_ES
dc.description.references Guillena, G., Ramón, D. J., & Yus, M. (2009). Hydrogen Autotransfer in theN-Alkylation of Amines and Related Compounds using Alcohols and Amines as Electrophiles. Chemical Reviews, 110(3), 1611-1641. doi:10.1021/cr9002159 es_ES
dc.description.references Bähn, S., Imm, S., Neubert, L., Zhang, M., Neumann, H., & Beller, M. (2011). The Catalytic Amination of Alcohols. ChemCatChem, 3(12), 1853-1864. doi:10.1002/cctc.201100255 es_ES
dc.description.references Yang, Q., Wang, Q., & Yu, Z. (2015). Substitution of alcohols by N-nucleophiles via transition metal-catalyzed dehydrogenation. Chemical Society Reviews, 44(8), 2305-2329. doi:10.1039/c4cs00496e es_ES
dc.description.references Ma, X., Su, C., & Xu, Q. (2016). N-Alkylation by Hydrogen Autotransfer Reactions. Topics in Current Chemistry, 374(3). doi:10.1007/s41061-016-0027-1 es_ES
dc.description.references Guillena, G., Ramón, D. J., & Yus, M. (2007). Alcohols as Electrophiles in CC Bond-Forming Reactions: The Hydrogen Autotransfer Process. Angewandte Chemie International Edition, 46(14), 2358-2364. doi:10.1002/anie.200603794 es_ES
dc.description.references Huang, F., Liu, Z., & Yu, Z. (2015). C-Alkylation of Ketones and Related Compounds by Alcohols: Transition-Metal-Catalyzed Dehydrogenation. Angewandte Chemie International Edition, 55(3), 862-875. doi:10.1002/anie.201507521 es_ES
dc.description.references Obora, Y. (2016). C-Alkylation by Hydrogen Autotransfer Reactions. Topics in Current Chemistry, 374(2). doi:10.1007/s41061-016-0012-8 es_ES
dc.description.references Corma, A., Navas, J., Ródenas, T., & Sabater, M. J. (2013). One‐Pot Palladium‐Catalyzed Borrowing Hydrogen Synthesis of Thioethers. Chemistry – A European Journal, 19(51), 17464-17471. doi:10.1002/chem.201302226 es_ES
dc.description.references Glass, R. S. (1976). Reductive Sulfidation. Conversion of Aldehydes into Sulfides. Synthetic Communications, 6(1), 47-51. doi:10.1080/00397917608062132 es_ES
dc.description.references Kikugawa, Y. (1981). A NEW SYNTHESIS OF SULFIDES FROM THIOLS AND ALDEHYDES OR KETONES WITH PYRIDINE-BORANE IN TRIFLUOROACETIC ACID. Chemistry Letters, 10(8), 1157-1158. doi:10.1246/cl.1981.1157 es_ES
dc.description.references Olah, G. A., Wang, Q., Trivedi, N. J., & Surya Prakash, G. K. (1992). Boron Trifluoride Monohydrate Catalyzed One-Flask Preparation of Sulfides from Carbonyl Compounds with Thiols and Triethylsilane. Synthesis, 1992(05), 465-466. doi:10.1055/s-1992-26138 es_ES
dc.description.references Olah, G. A., Wang, Q., Li, X., & Surya Prakash, G. K. (1993). Boron Trifluoride Monohydrate Catalyzed One-Flask 2,2,2-Trifluoro-1-(ethylthio)ethylation of Aromatics with Trifluoroacetaldehyde Hydrate and Ethanethiol1. Synlett, 1993(01), 32-34. doi:10.1055/s-1993-22336 es_ES
dc.description.references Liu, L., Concepción, P., & Corma, A. (2016). Non-noble metal catalysts for hydrogenation: A facile method for preparing Co nanoparticles covered with thin layered carbon. Journal of Catalysis, 340, 1-9. doi:10.1016/j.jcat.2016.04.006 es_ES
dc.description.references Liu, L., Gao, F., Concepción, P., & Corma, A. (2017). A new strategy to transform mono and bimetallic non-noble metal nanoparticles into highly active and chemoselective hydrogenation catalysts. Journal of Catalysis, 350, 218-225. doi:10.1016/j.jcat.2017.03.014 es_ES
dc.description.references Millán, R., Liu, L., Boronat, M., & Corma, A. (2018). A new molecular pathway allows the chemoselective reduction of nitroaromatics on non-noble metal catalysts. Journal of Catalysis, 364, 19-30. doi:10.1016/j.jcat.2018.05.004 es_ES
dc.description.references Filonenko, G. A., van Putten, R., Hensen, E. J. M., & Pidko, E. A. (2018). Catalytic (de)hydrogenation promoted by non-precious metals – Co, Fe and Mn: recent advances in an emerging field. Chemical Society Reviews, 47(4), 1459-1483. doi:10.1039/c7cs00334j es_ES
dc.description.references Taguchi, K., Nakagawa, H., Hirabayashi, T., Sakaguchi, S., & Ishii, Y. (2004). An Efficient Direct α-Alkylation of Ketones with Primary Alcohols Catalyzed by [Ir(cod)Cl]2/PPh3/KOH System without Solvent. Journal of the American Chemical Society, 126(1), 72-73. doi:10.1021/ja037552c es_ES
dc.description.references Burling, S., Paine, B. M., Nama, D., Brown, V. S., Mahon, M. F., Prior, T. J., … Williams, J. M. J. (2007). CH Activation Reactions of Ruthenium N-Heterocyclic Carbene Complexes:  Application in a Catalytic Tandem Reaction Involving CC Bond Formation from Alcohols. Journal of the American Chemical Society, 129(7), 1987-1995. doi:10.1021/ja065790c es_ES
dc.description.references Iuchi, Y., Obora, Y., & Ishii, Y. (2010). Iridium-Catalyzed α-Alkylation of Acetates with Primary Alcohols and Diols. Journal of the American Chemical Society, 132(8), 2536-2537. doi:10.1021/ja9106989 es_ES
dc.description.references Blank, B., & Kempe, R. (2010). Catalytic Alkylation of Methyl-N-Heteroaromatics with Alcohols. Journal of the American Chemical Society, 132(3), 924-925. doi:10.1021/ja9095413 es_ES
dc.description.references Obora, Y., Anno, Y., Okamoto, R., Matsu-ura, T., & Ishii, Y. (2011). Iridium-Catalyzed Reactions of ω-Arylalkanols to α,ω-Diarylalkanes. Angewandte Chemie International Edition, 50(37), 8618-8622. doi:10.1002/anie.201104452 es_ES
dc.description.references Peña-López, M., Neumann, H., & Beller, M. (2015). Ruthenium pincer-catalyzed synthesis of substituted γ-butyrolactones using hydrogen autotransfer methodology. Chemical Communications, 51(66), 13082-13085. doi:10.1039/c5cc01708d es_ES
dc.description.references Guo, L., Ma, X., Fang, H., Jia, X., & Huang, Z. (2015). A General and Mild Catalytic α-Alkylation of Unactivated Esters Using Alcohols. Angewandte Chemie International Edition, 54(13), 4023-4027. doi:10.1002/anie.201410293 es_ES
dc.description.references Shen, D., Poole, D. L., Shotton, C. C., Kornahrens, A. F., Healy, M. P., & Donohoe, T. J. (2014). Hydrogen-Borrowing and Interrupted-Hydrogen-Borrowing Reactions of Ketones and Methanol Catalyzed by Iridium. Angewandte Chemie International Edition, 54(5), 1642-1645. doi:10.1002/anie.201410391 es_ES
dc.description.references Zou, Q., Wang, C., Smith, J., Xue, D., & Xiao, J. (2015). Alkylation of Amines with Alcohols and Amines by a Single Catalyst under Mild Conditions. Chemistry - A European Journal, 21(27), 9656-9661. doi:10.1002/chem.201501109 es_ES
dc.description.references Peña-López, M., Neumann, H., & Beller, M. (2016). (Enantio)selective Hydrogen Autotransfer: Ruthenium-Catalyzed Synthesis of Oxazolidin-2-ones from Urea and Diols. Angewandte Chemie International Edition, 55(27), 7826-7830. doi:10.1002/anie.201600698 es_ES
dc.description.references Wang, Q., Wu, K., & Yu, Z. (2016). Ruthenium(III)-Catalyzed β-Alkylation of Secondary Alcohols with Primary Alcohols. Organometallics, 35(9), 1251-1256. doi:10.1021/acs.organomet.6b00130 es_ES
dc.description.references Said Stålsmeden, A., Belmonte Vázquez, J. L., van Weerdenburg, K., Rae, R., Norrby, P.-O., & Kann, N. (2016). Glycerol Upgrading via Hydrogen Borrowing: Direct Ruthenium-Catalyzed Amination of the Glycerol Derivative Solketal. ACS Sustainable Chemistry & Engineering, 4(10), 5730-5736. doi:10.1021/acssuschemeng.6b01659 es_ES
dc.description.references Yang, J., Liu, X., Meng, D.-L., Chen, H.-Y., Zong, Z.-H., Feng, T.-T., & Sun, K. (2012). Efficient Iron-Catalyzed Direct β-Alkylation of Secondary Alcohols with Primary Alcohols. Advanced Synthesis & Catalysis, 354(2-3), 328-334. doi:10.1002/adsc.201000907 es_ES
dc.description.references Bala, M., Verma, P. K., Sharma, U., Kumar, N., & Singh, B. (2013). Iron phthalocyanine as an efficient and versatile catalyst for N-alkylation of heterocyclic amines with alcohols: one-pot synthesis of 2-substituted benzimidazoles, benzothiazoles and benzoxazoles. Green Chemistry, 15(6), 1687. doi:10.1039/c3gc40137e es_ES
dc.description.references Yan, T., Feringa, B. L., & Barta, K. (2014). Iron catalysed direct alkylation of amines with alcohols. Nature Communications, 5(1). doi:10.1038/ncomms6602 es_ES
dc.description.references Elangovan, S., Sortais, J.-B., Beller, M., & Darcel, C. (2015). Iron-Catalyzed α-Alkylation of Ketones with Alcohols. Angewandte Chemie International Edition, 54(48), 14483-14486. doi:10.1002/anie.201506698 es_ES
dc.description.references Pan, H.-J., Ng, T. W., & Zhao, Y. (2015). Iron-catalyzed amination of alcohols assisted by Lewis acid. Chemical Communications, 51(59), 11907-11910. doi:10.1039/c5cc03399c es_ES
dc.description.references Mastalir, M., Stöger, B., Pittenauer, E., Puchberger, M., Allmaier, G., & Kirchner, K. (2016). Air Stable Iron(II) PNP Pincer Complexes as Efficient Catalysts for the Selective Alkylation of Amines with Alcohols. Advanced Synthesis & Catalysis, 358(23), 3824-3831. doi:10.1002/adsc.201600689 es_ES
dc.description.references Peña-López, M., Neumann, H., & Beller, M. (2016). Iron-Catalyzed Reaction of Urea with Alcohols and Amines: A Safe Alternative for the Synthesis of Primary Carbamates. ChemSusChem, 9(16), 2233-2238. doi:10.1002/cssc.201600587 es_ES
dc.description.references Yan, T., Feringa, B. L., & Barta, K. (2015). Benzylamines via Iron-Catalyzed Direct Amination of Benzyl Alcohols. ACS Catalysis, 6(1), 381-388. doi:10.1021/acscatal.5b02160 es_ES
dc.description.references Polidano, K., Allen, B. D. W., Williams, J. M. J., & Morrill, L. C. (2018). Iron-Catalyzed Methylation Using the Borrowing Hydrogen Approach. ACS Catalysis, 8(7), 6440-6445. doi:10.1021/acscatal.8b02158 es_ES
dc.description.references Rösler, S., Ertl, M., Irrgang, T., & Kempe, R. (2015). Cobalt-Catalyzed Alkylation of Aromatic Amines by Alcohols. Angewandte Chemie International Edition, 54(50), 15046-15050. doi:10.1002/anie.201507955 es_ES
dc.description.references Deibl, N., & Kempe, R. (2016). General and Mild Cobalt-Catalyzed C-Alkylation of Unactivated Amides and Esters with Alcohols. Journal of the American Chemical Society, 138(34), 10786-10789. doi:10.1021/jacs.6b06448 es_ES
dc.description.references Yin, Z., Zeng, H., Wu, J., Zheng, S., & Zhang, G. (2016). Cobalt-Catalyzed Synthesis of Aromatic, Aliphatic, and Cyclic Secondary Amines via a «Hydrogen-Borrowing» Strategy. ACS Catalysis, 6(10), 6546-6550. doi:10.1021/acscatal.6b02218 es_ES
dc.description.references Freitag, F., Irrgang, T., & Kempe, R. (2017). Cobalt-Catalyzed Alkylation of Secondary Alcohols with Primary Alcohols via Borrowing Hydrogen/Hydrogen Autotransfer. Chemistry - A European Journal, 23(50), 12110-12113. doi:10.1002/chem.201701211 es_ES
dc.description.references Zhang, G., Wu, J., Zeng, H., Zhang, S., Yin, Z., & Zheng, S. (2017). Cobalt-Catalyzed α-Alkylation of Ketones with Primary Alcohols. Organic Letters, 19(5), 1080-1083. doi:10.1021/acs.orglett.7b00106 es_ES
dc.description.references Liao, S., Yu, K., Li, Q., Tian, H., Zhang, Z., Yu, X., & Xu, Q. (2012). Copper-catalyzed C-alkylation of secondary alcohols and methyl ketones with alcohols employing the aerobic relay race methodology. Organic & Biomolecular Chemistry, 10(15), 2973. doi:10.1039/c1ob06739g es_ES
dc.description.references Elangovan, S., Neumann, J., Sortais, J.-B., Junge, K., Darcel, C., & Beller, M. (2016). Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes. Nature Communications, 7(1). doi:10.1038/ncomms12641 es_ES
dc.description.references Mukherjee, A., Nerush, A., Leitus, G., Shimon, L. J. W., Ben David, Y., Espinosa Jalapa, N. A., & Milstein, D. (2016). Manganese-Catalyzed Environmentally Benign Dehydrogenative Coupling of Alcohols and Amines to Form Aldimines and H2: A Catalytic and Mechanistic Study. Journal of the American Chemical Society, 138(13), 4298-4301. doi:10.1021/jacs.5b13519 es_ES
dc.description.references Peña-López, M., Piehl, P., Elangovan, S., Neumann, H., & Beller, M. (2016). Manganese-Catalyzed Hydrogen-Autotransfer C−C Bond Formation: α-Alkylation of Ketones with Primary Alcohols. Angewandte Chemie International Edition, 55(48), 14967-14971. doi:10.1002/anie.201607072 es_ES
dc.description.references Bruneau-Voisine, A., Wang, D., Dorcet, V., Roisnel, T., Darcel, C., & Sortais, J.-B. (2017). Mono-N-methylation of anilines with methanol catalyzed by a manganese pincer-complex. Journal of Catalysis, 347, 57-62. doi:10.1016/j.jcat.2017.01.004 es_ES
dc.description.references Deibl, N., & Kempe, R. (2017). Manganese‐Catalyzed Multicomponent Synthesis of Pyrimidines from Alcohols and Amidines. Angewandte Chemie International Edition, 56(6), 1663-1666. doi:10.1002/anie.201611318 es_ES
dc.description.references Fu, S., Shao, Z., Wang, Y., & Liu, Q. (2017). Manganese-Catalyzed Upgrading of Ethanol into 1-Butanol. Journal of the American Chemical Society, 139(34), 11941-11948. doi:10.1021/jacs.7b05939 es_ES
dc.description.references Neumann, J., Elangovan, S., Spannenberg, A., Junge, K., & Beller, M. (2017). Improved and General Manganese‐Catalyzed N‐Methylation of Aromatic Amines Using Methanol. Chemistry – A European Journal, 23(23), 5410-5413. doi:10.1002/chem.201605218 es_ES
dc.description.references Barman, M. K., Waiba, S., & Maji, B. (2018). Manganese-Catalyzed Direct Olefination of Methyl-Substituted Heteroarenes with Primary Alcohols. Angewandte Chemie International Edition, 57(29), 9126-9130. doi:10.1002/anie.201804729 es_ES
dc.description.references Das, U. K., Ben-David, Y., Diskin-Posner, Y., & Milstein, D. (2018). N-Substituted Hydrazones by Manganese-Catalyzed Coupling of Alcohols with Hydrazine: Borrowing Hydrogen and Acceptorless Dehydrogenation in One System. Angewandte Chemie International Edition, 57(8), 2179-2182. doi:10.1002/anie.201712593 es_ES
dc.description.references Piehl, P., Peña-López, M., Frey, A., Neumann, H., & Beller, M. (2017). Hydrogen autotransfer and related dehydrogenative coupling reactions using a rhenium(i) pincer catalyst. Chemical Communications, 53(22), 3265-3268. doi:10.1039/c6cc09977g es_ES
dc.description.references Carlini, C., Macinai, A., Marchionna, M., Noviello, M., Galletti, A. M. R., & Sbrana, G. (2003). Selective synthesis of isobutanol by means of the Guerbet reaction. Journal of Molecular Catalysis A: Chemical, 206(1-2), 409-418. doi:10.1016/s1381-1169(03)00453-9 es_ES
dc.description.references Alonso, F., Riente, P., & Yus, M. (2008). Alcohols for the α-Alkylation of Methyl Ketones and Indirect Aza-Wittig Reaction Promoted by Nickel Nanoparticles. European Journal of Organic Chemistry, 2008(29), 4908-4914. doi:10.1002/ejoc.200800729 es_ES
dc.description.references Shimizu, K., Kanno, S., Kon, K., Hakim Siddiki, S. M. A., Tanaka, H., & Sakata, Y. (2014). N-alkylation of ammonia and amines with alcohols catalyzed by Ni-loaded CaSiO3. Catalysis Today, 232, 134-138. doi:10.1016/j.cattod.2013.09.002 es_ES
dc.description.references Onyestyák, G., Novodárszki, G., Barthos, R., Klébert, S., Wellisch, Á. F., & Pilbáth, A. (2015). Acetone alkylation with ethanol over multifunctional catalysts by a borrowing hydrogen strategy. RSC Advances, 5(120), 99502-99509. doi:10.1039/c5ra17889d es_ES
dc.description.references Xu, J., Yue, H., Liu, S., Wang, H., Du, Y., Xu, C., … Liu, C. (2016). Cu–Ag/hydrotalcite catalysts for dehydrogenative cross-coupling of primary and secondary benzylic alcohols. RSC Advances, 6(29), 24164-24174. doi:10.1039/c5ra22542f es_ES
dc.description.references H. Topsøe , B. S.Clausen and F. E.Massoth , Hydrotreating Catalysis, Science and Technology , Springer-Verlag , Heidelberg , 1996 es_ES
dc.description.references K. Toshiaki , I.Atsushi and Q.Weihua , Hydrodesulfurization and Hydrodenitrogenation: Chemistry and Engineering , Wiley-VCH , Tokyo , 1999 es_ES
dc.description.references R. A. Sánchez-Delgado , Organometallic Modeling of the Hydrodesulfurization and Hydrodenitrogenation Reactions , Springer Netherlands, Kluwer , Dordrecht , 2002 es_ES
dc.description.references Plantenga, F. L., Cerfontain, R., Eijsbouts, S., van Houtert, F., Anderson, G. H., Miseo, S., … Inoue, Y. (2003). 89 «Nebula»: A hydroprocessing catalyst with breakthrough activity. Studies in Surface Science and Catalysis, 407-410. doi:10.1016/s0167-2991(03)80246-x es_ES
dc.description.references Eijsbouts, S., Mayo, S. W., & Fujita, K. (2007). Unsupported transition metal sulfide catalysts: From fundamentals to industrial application. Applied Catalysis A: General, 322, 58-66. doi:10.1016/j.apcata.2007.01.008 es_ES
dc.description.references Yoosuk, B., Song, C., Kim, J. H., Ngamcharussrivichai, C., & Prasassarakich, P. (2010). Effects of preparation conditions in hydrothermal synthesis of highly active unsupported NiMo sulfide catalysts for simultaneous hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. Catalysis Today, 149(1-2), 52-61. doi:10.1016/j.cattod.2009.05.001 es_ES
dc.description.references Yoosuk, B., Tumnantong, D., & Prasassarakich, P. (2012). Amorphous unsupported Ni–Mo sulfide prepared by one step hydrothermal method for phenol hydrodeoxygenation. Fuel, 91(1), 246-252. doi:10.1016/j.fuel.2011.08.001 es_ES
dc.description.references Wang, W., Zhang, K., Li, L., Wu, K., Liu, P., & Yang, Y. (2014). Synthesis of Highly Active Co–Mo–S Unsupported Catalysts by a One-Step Hydrothermal Method for p-Cresol Hydrodeoxygenation. Industrial & Engineering Chemistry Research, 53(49), 19001-19009. doi:10.1021/ie5032698 es_ES
dc.description.references Itthibenchapong, V., Ratanatawanate, C., Oura, M., & Faungnawakij, K. (2015). A facile and low-cost synthesis of MoS2 for hydrodeoxygenation of phenol. Catalysis Communications, 68, 31-35. doi:10.1016/j.catcom.2015.04.024 es_ES
dc.description.references Wang, W., Li, L., Wu, K., Zhu, G., Tan, S., Li, W., & Yang, Y. (2015). Hydrothermal synthesis of bimodal mesoporous MoS2 nanosheets and their hydrodeoxygenation properties. RSC Advances, 5(76), 61799-61807. doi:10.1039/c5ra09690a es_ES
dc.description.references Wang, W., Li, L., Wu, K., Zhang, K., Jie, J., & Yang, Y. (2015). Preparation of Ni–Mo–S catalysts by hydrothermal method and their hydrodeoxygenation properties. Applied Catalysis A: General, 495, 8-16. doi:10.1016/j.apcata.2015.01.041 es_ES
dc.description.references Wang, W., Li, L., Tan, S., Wu, K., Zhu, G., Liu, Y., … Yang, Y. (2016). Preparation of NiS2//MoS2 catalysts by two-step hydrothermal method and their enhanced activity for hydrodeoxygenation of p-cresol. Fuel, 179, 1-9. doi:10.1016/j.fuel.2016.03.068 es_ES
dc.description.references Wang, W., Wu, K., Li, L., Tan, S., Zhu, G., Li, W., … Yang, Y. (2016). Microwave-assisted hydrothermal synthesis of NiS and their promotional effect for the hydrodeoxygenation of p-cresol on MoS2. Catalysis Communications, 74, 60-64. doi:10.1016/j.catcom.2015.10.032 es_ES
dc.description.references Wang, W., Zhu, G., Li, L., Tan, S., Wu, K., Zhang, X., & Yang, Y. (2016). Facile hydrothermal synthesis of flower-like Co–Mo–S catalysts and their high activities in the hydrodeoxygenation of p-cresol and hydrodesulfurization of benzothiophene. Fuel, 174, 1-8. doi:10.1016/j.fuel.2016.01.074 es_ES
dc.description.references Sorribes, I., Liu, L., & Corma, A. (2017). Nanolayered Co–Mo–S Catalysts for the Chemoselective Hydrogenation of Nitroarenes. ACS Catalysis, 7(4), 2698-2708. doi:10.1021/acscatal.7b00170 es_ES
dc.description.references Sorribes, I., Liu, L., Doménech-Carbó, A., & Corma, A. (2018). Nanolayered Cobalt–Molybdenum Sulfides as Highly Chemo- and Regioselective Catalysts for the Hydrogenation of Quinoline Derivatives. ACS Catalysis, 8(5), 4545-4557. doi:10.1021/acscatal.7b04260 es_ES
dc.description.references TOPSOE, H. (1981). In situ M�ssbauer emission spectroscopy studies of unsupported and supported sulfided Co$z.sbnd;Mo hydrodesulfurization catalysts: Evidence for and nature of a Co$z.sbnd;Mo$z.sbnd;S phase. Journal of Catalysis, 68(2), 433-452. doi:10.1016/0021-9517(81)90114-7 es_ES
dc.description.references WIVEL, C. (1981). On the catalytic significance of a Co$z.sbnd;Mo$z.sbnd;S phase in Co$z.sbnd;Mo/Al2O3 hydrodesulfurization catalysts: Combined in situ M�ssbauer emission spectroscopy and activity studies. Journal of Catalysis, 68(2), 453-463. doi:10.1016/0021-9517(81)90115-9 es_ES
dc.description.references Clausen, B. S., Topsoe, H., Candia, R., Villadsen, J., Lengeler, B., Als-Nielsen, J., & Christensen, F. (1981). Extended x-ray absorption fine structure study of the cobalt-molybdenum hydrodesulfurization catalysts. The Journal of Physical Chemistry, 85(25), 3868-3872. doi:10.1021/j150625a032 es_ES
dc.description.references Breysse, M., Bennett, B. A., Chadwick, D., & Vrinat, M. (2010). Structure and HDS Activity of Co-Mo Catalysts: A Comparison Of Alumina and Carbon Supports. Bulletin des Sociétés Chimiques Belges, 90(12), 1271-1278. doi:10.1002/bscb.19810901211 es_ES
dc.description.references TOPSOE, N. (1983). Characterization of the structures and active sites in sulfided Co$z.sbnd;Mo/Al2O3 and Ni$z.sbnd;Mo/Al2O3 catalysts by NO chemisorption. Journal of Catalysis, 84(2), 386-401. doi:10.1016/0021-9517(83)90010-6 es_ES
dc.description.references Kasztelan, S., Toulhoat, H., Grimblot, J., & Bonnelle, J. P. (1984). A geometrical model of the active phase of hydrotreating catalysts. Applied Catalysis, 13(1), 127-159. doi:10.1016/s0166-9834(00)83333-3 es_ES
dc.description.references Topsøe, H., & Clausen, B. S. (1986). Active sites and support effects in hydrodesulfurization catalysts. Applied Catalysis, 25(1-2), 273-293. doi:10.1016/s0166-9834(00)81246-4 es_ES
dc.description.references Byskov, L. S., Nørskov, J. K., Clausen, B. S., & Topsøe, H. (1999). DFT Calculations of Unpromoted and Promoted MoS2-Based Hydrodesulfurization Catalysts. Journal of Catalysis, 187(1), 109-122. doi:10.1006/jcat.1999.2598 es_ES
dc.description.references Schweiger, H., Raybaud, P., & Toulhoat, H. (2002). Promoter Sensitive Shapes of Co(Ni)MoS Nanocatalysts in Sulfo-Reductive Conditions. Journal of Catalysis, 212(1), 33-38. doi:10.1006/jcat.2002.3737 es_ES
dc.description.references Lauritsen, J. V., Bollinger, M. V., Lægsgaard, E., Jacobsen, K. W., Nørskov, J. K., Clausen, B. S., … Besenbacher, F. (2004). Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts. Journal of Catalysis, 221(2), 510-522. doi:10.1016/j.jcat.2003.09.015 es_ES
dc.description.references Topsøe, H. (2007). The role of Co–Mo–S type structures in hydrotreating catalysts. Applied Catalysis A: General, 322, 3-8. doi:10.1016/j.apcata.2007.01.002 es_ES
dc.description.references LAURITSEN, J., KIBSGAARD, J., OLESEN, G., MOSES, P., HINNEMANN, B., HELVEG, S., … LAGSGAARD, E. (2007). Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts. Journal of Catalysis, 249(2), 220-233. doi:10.1016/j.jcat.2007.04.013 es_ES
dc.description.references Berhault, G., Perez De la Rosa, M., Mehta, A., Yácaman, M. J., & Chianelli, R. R. (2008). The single-layered morphology of supported MoS2-based catalysts—The role of the cobalt promoter and its effects in the hydrodesulfurization of dibenzothiophene. Applied Catalysis A: General, 345(1), 80-88. doi:10.1016/j.apcata.2008.04.034 es_ES
dc.description.references Besenbacher, F., Brorson, M., Clausen, B. S., Helveg, S., Hinnemann, B., Kibsgaard, J., … Topsøe, H. (2008). Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: Insight into mechanistic, structural and particle size effects. Catalysis Today, 130(1), 86-96. doi:10.1016/j.cattod.2007.08.009 es_ES
dc.description.references Gandubert, A. D., Krebs, E., Legens, C., Costa, D., Guillaume, D., & Raybaud, P. (2008). Optimal promoter edge decoration of CoMoS catalysts: A combined theoretical and experimental study. Catalysis Today, 130(1), 149-159. doi:10.1016/j.cattod.2007.06.041 es_ES
dc.description.references Krebs, E., Silvi, B., & Raybaud, P. (2008). Mixed sites and promoter segregation: A DFT study of the manifestation of Le Chatelier’s principle for the Co(Ni)MoS active phase in reaction conditions. Catalysis Today, 130(1), 160-169. doi:10.1016/j.cattod.2007.06.081 es_ES
dc.description.references Kibsgaard, J., Tuxen, A., Knudsen, K. G., Brorson, M., Topsøe, H., Lægsgaard, E., … Besenbacher, F. (2010). Comparative atomic-scale analysis of promotional effects by late 3d-transition metals in MoS2 hydrotreating catalysts. Journal of Catalysis, 272(2), 195-203. doi:10.1016/j.jcat.2010.03.018 es_ES
dc.description.references Zhu, Y., Ramasse, Q. M., Brorson, M., Moses, P. G., Hansen, L. P., Kisielowski, C. F., & Helveg, S. (2014). Visualizing the Stoichiometry of Industrial-Style Co-Mo-S Catalysts with Single-Atom Sensitivity. Angewandte Chemie International Edition, 53(40), 10723-10727. doi:10.1002/anie.201405690 es_ES
dc.description.references F. Scholz , U.Schröder , R.Gulaboski and A.Doménech-Carbó , Electrochemistry of Immobilized Particles and Droplets , Springer , Berlin-Heidelberg , 2nd edn, 2014 es_ES
dc.description.references Doménech-Carbó, A., Labuda, J., & Scholz, F. (2012). Electroanalytical chemistry for the analysis of solids: Characterization and classification (IUPAC Technical Report). Pure and Applied Chemistry, 85(3), 609-631. doi:10.1351/pac-rep-11-11-13 es_ES
dc.description.references McCullough, L. R., Childers, D. J., Watson, R. A., Kilos, B. A., Barton, D. G., Weitz, E., … Notestein, J. M. (2017). Acceptorless Dehydrogenative Coupling of Neat Alcohols Using Group VI Sulfide Catalysts. ACS Sustainable Chemistry & Engineering, 5(6), 4890-4896. doi:10.1021/acssuschemeng.7b00303 es_ES
dc.description.references McCullough, L. R., Cheng, E. S., Gosavi, A. A., Kilos, B. A., Barton, D. G., Weitz, E., … Notestein, J. M. (2018). Gas phase acceptorless dehydrogenative coupling of ethanol over bulk MoS2 and spectroscopic measurement of structural disorder. Journal of Catalysis, 366, 159-166. doi:10.1016/j.jcat.2018.07.039 es_ES
dc.description.references PIÉPLU, A., SAUR, O., LAVALLEY, J.-C., LEGENDRE, O., & NÉDEZ, C. (1998). Claus Catalysis and H2S Selective Oxidation. Catalysis Reviews, 40(4), 409-450. doi:10.1080/01614949808007113 es_ES
dc.description.references Eow, J. S. (2002). Recovery of sulfur from sour acid gas: A review of the technology. Environmental Progress, 21(3), 143-162. doi:10.1002/ep.670210312 es_ES
dc.description.references Huang, H., Yu, Y., & Chung, K. H. (2009). Recovery of Hydrogen and Sulfur by Indirect Electrolysis of Hydrogen Sulfide. Energy & Fuels, 23(9), 4420-4425. doi:10.1021/ef900424a es_ES
dc.description.references Singh, G., Nakade, P. G., Chetia, D., Jha, P., Mondal, U., Kumari, S., & Sen, S. (2016). Kinetics and mechanism of phase transfer catalyzed synthesis of aromatic thioethers by H 2 S-rich methyldiethanolamine. Journal of Industrial and Engineering Chemistry, 37, 190-197. doi:10.1016/j.jiec.2016.03.022 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem