- -

Reinventing the De Mayo reaction: synthesis of 1,5-diketones or 1,5-ketoesters via visible light [2+2] cycloaddition of beta-diketones or beta-ketoesters with styrenes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reinventing the De Mayo reaction: synthesis of 1,5-diketones or 1,5-ketoesters via visible light [2+2] cycloaddition of beta-diketones or beta-ketoesters with styrenes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez-Haya, Rebeca es_ES
dc.contributor.author Marzo, L. es_ES
dc.contributor.author König, B. es_ES
dc.date.accessioned 2020-11-14T04:32:00Z
dc.date.available 2020-11-14T04:32:00Z
dc.date.issued 2018-10-21 es_ES
dc.identifier.issn 1359-7345 es_ES
dc.identifier.uri http://hdl.handle.net/10251/155064
dc.description.abstract [EN] A visible light mediated De Mayo reaction between 1,3-diketones and styrenes following a [2+2] cycloaddition pathway via a photosensitization mechanism gives access to 1,5-diketones. The reaction has been applied to substituted styrenes and aryl- and alkyl-substituted ketones. Moreover, the method converts -ketoesters, -amido esters, and -cyano ketones. Seven membered rings, a frequent structural motif of natural products, are also accessible using this methodology. es_ES
dc.description.sponsorship This work was supported by the Deutsche Forschungsgemein-schaft DFG (GRK 1626, Chemical Photocatalysis). L. M. thanks the Alexander von Humboldt foundation for a postdoctoral fellowship. R. M.-H. thanks the DAAD for a short-term research grant. We thank Ms Regina Hoheisel (University of Regensburg) for her assistance in cyclic voltammetry measurements. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Photoredox catalysis es_ES
dc.subject Organic-Synthesis es_ES
dc.subject Energy-Transfer es_ES
dc.subject Photochemistry es_ES
dc.subject Photocycloaddition es_ES
dc.subject Photophysics es_ES
dc.subject Photocatalysis es_ES
dc.subject Enlargement es_ES
dc.subject Complexes es_ES
dc.subject Chemistry es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Reinventing the De Mayo reaction: synthesis of 1,5-diketones or 1,5-ketoesters via visible light [2+2] cycloaddition of beta-diketones or beta-ketoesters with styrenes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c8cc07044j es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DFG//GRK 1626/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Martínez-Haya, R.; Marzo, L.; König, B. (2018). Reinventing the De Mayo reaction: synthesis of 1,5-diketones or 1,5-ketoesters via visible light [2+2] cycloaddition of beta-diketones or beta-ketoesters with styrenes. Chemical Communications. 54(82):11602-11605. https://doi.org/10.1039/c8cc07044j es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c8cc07044j es_ES
dc.description.upvformatpinicio 11602 es_ES
dc.description.upvformatpfin 11605 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 54 es_ES
dc.description.issue 82 es_ES
dc.identifier.pmid 30264086 es_ES
dc.relation.pasarela S\388462 es_ES
dc.contributor.funder Deutsche Forschungsgemeinschaft es_ES
dc.contributor.funder Alexander von Humboldt Foundation es_ES
dc.contributor.funder Deutscher Akademischer Austauschdienst es_ES
dc.description.references Mayo, P. D., & Takeshita, H. (1963). PHOTOCHEMICAL SYNTHESES: 6. THE FORMATION OF HEPTANDIONES FROM ACETYLACETONE AND ALKENES. Canadian Journal of Chemistry, 41(2), 440-449. doi:10.1139/v63-061 es_ES
dc.description.references Begley, M. J., Mellor, M., & Pattenden, G. (1983). New synthetic approaches to fused-ring carbocycles based on intramolecular photocycloadditions of 1,3-dione enol esters. Journal of the Chemical Society, Perkin Transactions 1, 1905. doi:10.1039/p19830001905 es_ES
dc.description.references Oppolzer, W. (1982). The intramolecular [2 + 2] photoaddition/cyclobutane-fragmentation sequence in organic synthesis. Accounts of Chemical Research, 15(5), 135-141. doi:10.1021/ar00077a002 es_ES
dc.description.references Crimmins, M. T. (1988). Synthetic applications of intramolecular enone-olefin photocycloadditions. Chemical Reviews, 88(8), 1453-1473. doi:10.1021/cr00090a002 es_ES
dc.description.references Kärkäs, M. D., Porco, J. A., & Stephenson, C. R. J. (2016). Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis. Chemical Reviews, 116(17), 9683-9747. doi:10.1021/acs.chemrev.5b00760 es_ES
dc.description.references Winkler, J. D., Rouse, M. B., Greaney, M. F., Harrison, S. J., & Jeon, Y. T. (2002). The First Total Synthesis of (±)-Ingenol. Journal of the American Chemical Society, 124(33), 9726-9728. doi:10.1021/ja026600a es_ES
dc.description.references Winkler, J. D., Muller, C. L., & Scott, R. D. (1988). A new method for the formation of nitrogen-containing ring systems via the intramolecular photocycloaddition of vinylogous amides. A synthesis of mesembrine. Journal of the American Chemical Society, 110(14), 4831-4832. doi:10.1021/ja00222a053 es_ES
dc.description.references Winkler, J. D., Scott, R. D., & Williard, P. G. (1990). Asymmetric induction in the vinylogous amide photocycloaddition reaction. A formal synthesis of vindorosine. Journal of the American Chemical Society, 112(24), 8971-8975. doi:10.1021/ja00180a049 es_ES
dc.description.references Winkler, J. D., Bowen, C. M., & Liotta, F. (1995). [2 + 2] Photocycloaddition/Fragmentation Strategies for the Synthesis of Natural and Unnatural Products. Chemical Reviews, 95(6), 2003-2020. doi:10.1021/cr00038a010 es_ES
dc.description.references Y.-J. Wu , in Name Reactions for Carbocyclic Ring Formations , ed. J. J. Li , John Wiley & Sons, Inc. , Hoboken, New Jersey , 2010 , ch. 5, pp. 451–488 es_ES
dc.description.references A. C. Weedon , in CRC Handbook of Organic Photochemistry and Photobiology , ed. W. M. Horspool and P.-S. Song , CRC Press , Boca Raton , 1995 , pp. 670–684 es_ES
dc.description.references Ravelli, D., Protti, S., & Fagnoni, M. (2016). Carbon–Carbon Bond Forming Reactions via Photogenerated Intermediates. Chemical Reviews, 116(17), 9850-9913. doi:10.1021/acs.chemrev.5b00662 es_ES
dc.description.references Skubi, K. L., Blum, T. R., & Yoon, T. P. (2016). Dual Catalysis Strategies in Photochemical Synthesis. Chemical Reviews, 116(17), 10035-10074. doi:10.1021/acs.chemrev.6b00018 es_ES
dc.description.references Goddard, J.-P., Ollivier, C., & Fensterbank, L. (2016). Photoredox Catalysis for the Generation of Carbon Centered Radicals. Accounts of Chemical Research, 49(9), 1924-1936. doi:10.1021/acs.accounts.6b00288 es_ES
dc.description.references Yoon, T. P. (2016). Photochemical Stereocontrol Using Tandem Photoredox–Chiral Lewis Acid Catalysis. Accounts of Chemical Research, 49(10), 2307-2315. doi:10.1021/acs.accounts.6b00280 es_ES
dc.description.references Margrey, K. A., & Nicewicz, D. A. (2016). A General Approach to Catalytic Alkene Anti-Markovnikov Hydrofunctionalization Reactions via Acridinium Photoredox Catalysis. Accounts of Chemical Research, 49(9), 1997-2006. doi:10.1021/acs.accounts.6b00304 es_ES
dc.description.references Staveness, D., Bosque, I., & Stephenson, C. R. J. (2016). Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer. Accounts of Chemical Research, 49(10), 2295-2306. doi:10.1021/acs.accounts.6b00270 es_ES
dc.description.references Ghosh, I., Marzo, L., Das, A., Shaikh, R., & König, B. (2016). Visible Light Mediated Photoredox Catalytic Arylation Reactions. Accounts of Chemical Research, 49(8), 1566-1577. doi:10.1021/acs.accounts.6b00229 es_ES
dc.description.references Meggers, E. (2015). Asymmetric catalysis activated by visible light. Chemical Communications, 51(16), 3290-3301. doi:10.1039/c4cc09268f es_ES
dc.description.references Guo, L.-N., Wang, H., & Duan, X.-H. (2016). Recent advances in catalytic decarboxylative acylation reactions via a radical process. Organic & Biomolecular Chemistry, 14(31), 7380-7391. doi:10.1039/c6ob01113f es_ES
dc.description.references Marzo, L., Pagire, S. K., Reiser, O., & König, B. (2018). Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis? Angewandte Chemie International Edition, 57(32), 10034-10072. doi:10.1002/anie.201709766 es_ES
dc.description.references Lu, Z., & Yoon, T. P. (2012). Visible Light Photocatalysis of [2+2] Styrene Cycloadditions by Energy Transfer. Angewandte Chemie International Edition, 51(41), 10329-10332. doi:10.1002/anie.201204835 es_ES
dc.description.references Mojr, V., Svobodová, E., Straková, K., Neveselý, T., Chudoba, J., Dvořáková, H., & Cibulka, R. (2015). Tailoring flavins for visible light photocatalysis: organocatalytic [2+2] cycloadditions mediated by a flavin derivative and visible light. Chemical Communications, 51(60), 12036-12039. doi:10.1039/c5cc01344e es_ES
dc.description.references Pagire, S. K., Hossain, A., Traub, L., Kerres, S., & Reiser, O. (2017). Photosensitised regioselective [2+2]-cycloaddition of cinnamates and related alkenes. Chemical Communications, 53(89), 12072-12075. doi:10.1039/c7cc06710k es_ES
dc.description.references Zhao, J., Brosmer, J. L., Tang, Q., Yang, Z., Houk, K. N., Diaconescu, P. L., & Kwon, O. (2017). Intramolecular Crossed [2+2] Photocycloaddition through Visible Light-Induced Energy Transfer. Journal of the American Chemical Society, 139(29), 9807-9810. doi:10.1021/jacs.7b05277 es_ES
dc.description.references Hörmann, F. M., Chung, T. S., Rodriguez, E., Jakob, M., & Bach, T. (2018). Evidence for Triplet Sensitization in the Visible‐Light‐Induced [2+2] Photocycloaddition of Eniminium Ions. Angewandte Chemie International Edition, 57(3), 827-831. doi:10.1002/anie.201710441 es_ES
dc.description.references Alonso, R., & Bach, T. (2014). A Chiral Thioxanthone as an Organocatalyst for Enantioselective [2+2] Photocycloaddition Reactions Induced by Visible Light. Angewandte Chemie International Edition, 53(17), 4368-4371. doi:10.1002/anie.201310997 es_ES
dc.description.references Blum, T. R., Miller, Z. D., Bates, D. M., Guzei, I. A., & Yoon, T. P. (2016). Enantioselective photochemistry through Lewis acid–catalyzed triplet energy transfer. Science, 354(6318), 1391-1395. doi:10.1126/science.aai8228 es_ES
dc.description.references Miller, Z. D., Lee, B. J., & Yoon, T. P. (2017). Enantioselective Crossed Photocycloadditions of Styrenic Olefins by Lewis Acid Catalyzed Triplet Sensitization. Angewandte Chemie International Edition, 56(39), 11891-11895. doi:10.1002/anie.201706975 es_ES
dc.description.references Hanss, D., Freys, J. C., Bernardinelli, G., & Wenger, O. S. (2009). Cyclometalated Iridium(III) Complexes as Photosensitizers for Long-Range Electron Transfer: Occurrence of a Coulomb Barrier. European Journal of Inorganic Chemistry, 2009(32), 4850-4859. doi:10.1002/ejic.200900673 es_ES
dc.description.references Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews, 113(7), 5322-5363. doi:10.1021/cr300503r es_ES
dc.description.references Teegardin, K., Day, J. I., Chan, J., & Weaver, J. (2016). Advances in Photocatalysis: A Microreview of Visible Light Mediated Ruthenium and Iridium Catalyzed Organic Transformations. Organic Process Research & Development, 20(7), 1156-1163. doi:10.1021/acs.oprd.6b00101 es_ES
dc.description.references Flamigni, L., Barbieri, A., Sabatini, C., Ventura, B., & Barigelletti, F. (s. f.). Photochemistry and Photophysics of Coordination Compounds: Iridium. Topics in Current Chemistry, 143-203. doi:10.1007/128_2007_131 es_ES
dc.description.references Luo, J., & Zhang, J. (2016). Donor–Acceptor Fluorophores for Visible-Light-Promoted Organic Synthesis: Photoredox/Ni Dual Catalytic C(sp3)–C(sp2) Cross-Coupling. ACS Catalysis, 6(2), 873-877. doi:10.1021/acscatal.5b02204 es_ES
dc.description.references Fukuzumi, S., & Ohkubo, K. (2014). Organic synthetic transformations using organic dyes as photoredox catalysts. Org. Biomol. Chem., 12(32), 6059-6071. doi:10.1039/c4ob00843j es_ES
dc.description.references Romero, N. A., & Nicewicz, D. A. (2016). Organic Photoredox Catalysis. Chemical Reviews, 116(17), 10075-10166. doi:10.1021/acs.chemrev.6b00057 es_ES
dc.description.references Ni, T., Caldwell, R. A., & Melton, L. A. (1989). The relaxed and spectroscopic energies of olefin triplets. Journal of the American Chemical Society, 111(2), 457-464. doi:10.1021/ja00184a008 es_ES
dc.description.references Xie, Z.-F., Suemune, H., & Sakai, K. (1989). A Facile Ring Enlargement. Synthetic Communications, 19(5-6), 987-992. doi:10.1080/00397918908051019 es_ES
dc.description.references Li, C.-J., Chen, D.-L., Lu, Y.-Q., Haberman, J. X., & Mague, J. T. (1998). Metal-mediated two-atom carbocycle enlargement in aqueous medium. Tetrahedron, 54(11), 2347-2364. doi:10.1016/s0040-4020(98)00004-0 es_ES
dc.description.references Hong, B.-C., Chen, S.-H., Kumar, E. S., Lee, G.-H., & Lin, K.-J. (2003). Intramolecular [2+2] Photocycloaddition-Fragmentation: Facile Entry to a Novel Tricyclic 5-6-7 Ring System. Journal of the Chinese Chemical Society, 50(4), 917-926. doi:10.1002/jccs.200300129 es_ES
dc.description.references Roscini, C., Davies, D. M. E., Berry, M., Orr-Ewing, A. J., & Booker-Milburn, K. I. (2008). Product Selection through Photon Flux: Laser-Specific Lactone Synthesis. Angewandte Chemie International Edition, 47(12), 2283-2286. doi:10.1002/anie.200704816 es_ES
dc.description.references Tobita, S., Ohba, J., Nakagawa, K., & Shizuka, H. (1995). Recovery mechanism of the reaction intermediate produced by photoinduced cleavage of the intramolecular hydrogen bond of dibenzoylmethane. Journal of Photochemistry and Photobiology A: Chemistry, 92(1-2), 61-67. doi:10.1016/1010-6030(95)04158-x es_ES
dc.description.references Moriyasu, M., Kato, A., & Hashimoto, Y. (1986). Kinetic studies of fast equilibrium by means of high-performance liquid chromatography. Part 11. Keto–enol tautomerism of some β-dicarbonyl compounds. J. Chem. Soc., Perkin Trans. 2, (4), 515-520. doi:10.1039/p29860000515 es_ES
dc.description.references Casey, B. M., Eakin, C. A., Jiao, J., Sadasivam, D. V., & Flowers, R. A. (2009). Solvent-dependent oxidative coupling of 1-aryl-1,3-dicarbonyls and styrene. Tetrahedron, 65(52), 10762-10768. doi:10.1016/j.tet.2009.06.118 es_ES
dc.description.references Ko, T. Y., & Youn, S. W. (2016). Cooperative Indium(III)/Silver(I) System for Oxidative Coupling/Annulation of 1,3-Dicarbonyls and Styrenes: Construction of Five-Membered Heterocycles. Advanced Synthesis & Catalysis, 358(12), 1934-1941. doi:10.1002/adsc.201600280 es_ES
dc.description.references Casals, P.-F., Ferard, J., & Ropert, R. (1976). Photoaddition de dicetones-1,3 aromatiques sur divers carbures styreniques : orientation et stereospecificite de l’addition. Tetrahedron Letters, 17(35), 3077-3080. doi:10.1016/0040-4039(76)80074-3 es_ES
dc.description.references Kikuchi, A., Oguchi, N., & Yagi, M. (2009). Optical and Electron Paramagnetic Resonance Studies of the Excited States of 4-tert-Butyl-4′-Methoxydibenzoylmethane and 4-tert-Butyl-4′-Methoxydibenzoylpropane. The Journal of Physical Chemistry A, 113(48), 13492-13497. doi:10.1021/jp905236m es_ES
dc.description.references Turro, N. J. (1966). Triplet-triplet excitation transfer in fluid solution: Applications to organic photochemistry. Journal of Chemical Education, 43(1), 13. doi:10.1021/ed043p13 es_ES
dc.description.references Dilling, W. L. (1969). Photochemical cycloaddition reactions of nonaromatic conjugated hydrocarbon dienes and polyenes. Chemical Reviews, 69(6), 845-877. doi:10.1021/cr60262a005 es_ES
dc.description.references N. J. Turro , in Modern Molecular Photochemistry , Benjamin/Cummings , California , 1978 , ch. 9, pp. 296–359 es_ES
dc.description.references Albini, A. (1981). Photosensitization in Organic Synthesis. Synthesis, 1981(04), 249-264. doi:10.1055/s-1981-29405 es_ES
dc.description.references Kalyanasundaram, K. (1982). Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues. Coordination Chemistry Reviews, 46, 159-244. doi:10.1016/0010-8545(82)85003-0 es_ES
dc.description.references Juris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P., & von Zelewsky, A. (1988). Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence. Coordination Chemistry Reviews, 84, 85-277. doi:10.1016/0010-8545(88)80032-8 es_ES
dc.description.references Cismesia, M. A., & Yoon, T. P. (2015). Characterizing chain processes in visible light photoredox catalysis. Chemical Science, 6(10), 5426-5434. doi:10.1039/c5sc02185e es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem