- -

Conceptual similarities between zeolites and artificial enzymes

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Conceptual similarities between zeolites and artificial enzymes

Show full item record

Gallego-Sánchez, EM.; Paris, C.; Cantin Sanz, A.; Moliner Marin, M.; Corma Canós, A. (2019). Conceptual similarities between zeolites and artificial enzymes. Chemical Science. 10(34):8009-8015. https://doi.org/10.1039/C9SC02477H

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/155115

Files in this item

Item Metadata

Title: Conceptual similarities between zeolites and artificial enzymes
Author: Gallego-Sánchez, Eva María Paris, Cecilia Cantin Sanz, Angel Moliner Marin, Manuel Corma Canós, Avelino
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] By using a Diels-Alder (DA) reaction as a base case, we show that a pure silica zeolite acting as an entropy-trapping scaffold can be synthesized with an organic structure directing agent (OSDA) analogue of the ...[+]
Copyrigths: Reconocimiento - No comercial (by-nc)
Source:
Chemical Science. (issn: 2041-6520 )
DOI: 10.1039/C9SC02477H
Publisher:
The Royal Society of Chemistry
Publisher version: https://doi.org/10.1039/C9SC02477H
Project ID:
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//LCF%2FPR%2FMIT17%2F11820002/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101033-B-I00/ES/DISEÑO DE CATALIZADORES MULTIFUNCIONALES PARA LA CONVERSION EFICIENTE DE BIOGAS Y GAS NATURAL A HIDROCARBUROS DE INTERES INDUSTRIAL/
Thanks:
This work has been supported by the European Union through ERC-AdG-2014-671093 (SynCatMatch), by the Spanish Government-MINECO through "Severo Ochoa" (SEV-2016-0683) and RTI2018-101033, and by La Caixa Foundation through ...[+]
Type: Artículo

References

Woodward, R. B., Sondheimer, F., Taub, D., Heusler, K., & McLamore, W. M. (1952). The Total Synthesis of Steroids1. Journal of the American Chemical Society, 74(17), 4223-4251. doi:10.1021/ja01137a001

Woodward, R. B., Bader, F. E., Bickel, H., Frey, A. J., & Kierstead, R. W. (1956). THE TOTAL SYNTHESIS OF RESERPINE. Journal of the American Chemical Society, 78(9), 2023-2025. doi:10.1021/ja01590a079

Pacheco, J. J., & Davis, M. E. (2014). Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural. Proceedings of the National Academy of Sciences, 111(23), 8363-8367. doi:10.1073/pnas.1408345111 [+]
Woodward, R. B., Sondheimer, F., Taub, D., Heusler, K., & McLamore, W. M. (1952). The Total Synthesis of Steroids1. Journal of the American Chemical Society, 74(17), 4223-4251. doi:10.1021/ja01137a001

Woodward, R. B., Bader, F. E., Bickel, H., Frey, A. J., & Kierstead, R. W. (1956). THE TOTAL SYNTHESIS OF RESERPINE. Journal of the American Chemical Society, 78(9), 2023-2025. doi:10.1021/ja01590a079

Pacheco, J. J., & Davis, M. E. (2014). Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural. Proceedings of the National Academy of Sciences, 111(23), 8363-8367. doi:10.1073/pnas.1408345111

Settle, A. E., Berstis, L., Rorrer, N. A., Roman-Leshkóv, Y., Beckham, G. T., Richards, R. M., & Vardon, D. R. (2017). Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds. Green Chemistry, 19(15), 3468-3492. doi:10.1039/c7gc00992e

Page, M. I., & Jencks, W. P. (1971). Entropic Contributions to Rate Accelerations in Enzymic and Intramolecular Reactions and the Chelate Effect. Proceedings of the National Academy of Sciences, 68(8), 1678-1683. doi:10.1073/pnas.68.8.1678

Ho, G.-M., Huang, C.-J., Li, E. Y.-T., Hsu, S.-K., Wu, T., Zulueta, M. M. L., … Hung, S.-C. (2016). Unconventional exo selectivity in thermal normal-electron-demand Diels–Alder reactions. Scientific Reports, 6(1). doi:10.1038/srep35147

Marrocchi, A., Minuti, L., Taticchi, A., & Scheeren, H. W. (2001). High pressure and thermal Diels–Alder reaction of 2-vinyl-benzo[b]furan and 2-vinyl-benzo[b]thiophene. Synthesis of new condensed heterocycles. Tetrahedron, 57(23), 4959-4965. doi:10.1016/s0040-4020(01)00406-9

Seeley, D. A. (1972). Stereochemistry of the photochemical Diels-Alder reaction. Journal of the American Chemical Society, 94(12), 4378-4380. doi:10.1021/ja00767a077

Xu, F., Xiao, X., & Hoye, T. R. (2017). Photochemical Hexadehydro-Diels–Alder Reaction. Journal of the American Chemical Society, 139(25), 8400-8403. doi:10.1021/jacs.7b03832

Yamabe, S., Dai, T., & Minato, T. (1995). Fine Tuning [4 + 2] and [2 + 4] Diels-Alder Reactions Catalyzed by Lewis Acids. Journal of the American Chemical Society, 117(44), 10994-10997. doi:10.1021/ja00149a023

Yilmaz, Ö., Kus, N. S., Tunç, T., & Sahin, E. (2015). Diels–Alder reactions: The effects of catalyst on the addition reaction. Journal of Molecular Structure, 1098, 72-75. doi:10.1016/j.molstruc.2015.06.012

Song, S., Wu, G., Dai, W., Guan, N., & Li, L. (2016). Diels-Alder and dehydration reactions of furan derivatives with ethylene catalyzed by liquid Brønsted acids and Lewis acids. Journal of Molecular Catalysis A: Chemical, 420, 134-141. doi:10.1016/j.molcata.2016.04.023

Narayana Murthy, Y. V. S., & Pillai, C. N. (1991). Diels-Alder Reactions Catalyzed by Zeolites. Synthetic Communications, 21(6), 783-791. doi:10.1080/00397919108019757

Kubota, Y., Ishida, H., Nakamura, R., & Sugi, Y. (2003). Diels-Alder reaction catalyzed by ordered micro and mesoporous silicates. Studies in Surface Science and Catalysis, 749-752. doi:10.1016/s0167-2991(03)80492-5

GOMEZ, M., CANTIN, A., CORMA, A., & DELAHOZ, A. (2005). Use of different microporous and mesoporous materials as catalyst in the Diels–Alder and retro-Diels–Alder reaction between cyclopentadiene and p-benzoquinoneActivity of Al-, Ti- and Sn-doped silica. Journal of Molecular Catalysis A: Chemical, 240(1-2), 16-21. doi:10.1016/j.molcata.2005.06.030

Oikawa, H., & Tokiwano, T. (2004). Enzymatic catalysis of the Diels–Alder reaction in the biosynthesis of natural products. Nat. Prod. Rep., 21(3), 321-352. doi:10.1039/b305068h

H. Oikawa , Comprehensive Natural Products II, Chem. And Bio. , ed. B.-L. Mander and H.-W. Liu , Oxford Elsevier , 2010 , pp. 277–314

Gordeev, E. G., & Ananikov, V. P. (2015). Computational Study of a Model System of Enzyme-Mediated [4+2] Cycloaddition Reaction. PLOS ONE, 10(4), e0119984. doi:10.1371/journal.pone.0119984

Oikawa, H. (2016). Nature’s Strategy for Catalyzing Diels-Alder Reaction. Cell Chemical Biology, 23(4), 429-430. doi:10.1016/j.chembiol.2016.04.002

Preiswerk, N., Beck, T., Schulz, J. D., Milovnik, P., Mayer, C., Siegel, J. B., … Hilvert, D. (2014). Impact of scaffold rigidity on the design and evolution of an artificial Diels-Alderase. Proceedings of the National Academy of Sciences, 111(22), 8013-8018. doi:10.1073/pnas.1401073111

Siegel, J. B., Zanghellini, A., Lovick, H. M., Kiss, G., Lambert, A. R., St.Clair, J. L., … Baker, D. (2010). Computational Design of an Enzyme Catalyst for a Stereoselective Bimolecular Diels-Alder Reaction. Science, 329(5989), 309-313. doi:10.1126/science.1190239

Braisted, A. C., & Schultz, P. G. (1990). An antibody-catalyzed bimolecular Diels-Alder reaction. Journal of the American Chemical Society, 112(20), 7430-7431. doi:10.1021/ja00176a073

Roelfes, G., & Feringa, B. L. (2005). DNA-Based Asymmetric Catalysis. Angewandte Chemie International Edition, 44(21), 3230-3232. doi:10.1002/anie.200500298

Reetz, M. T. (2012). Artificial Metalloenzymes as Catalysts in Stereoselective Diels-Alder Reactions. The Chemical Record, 12(4), 391-406. doi:10.1002/tcr.201100043

Onaka, M., Yamasaki, R., & Ookoshi, T. (1999). Catalysis by solid acids: Selective diels-alder reactions promoted by mesoporous aluminosilicates having honeycomb-like openings in nanometer dimensions. Studies in Surface Science and Catalysis, 139-142. doi:10.1016/s0167-2991(99)80057-3

Cantín, Á., Gomez, M. V., & de la Hoz, A. (2016). Diels–Alder reactions in confined spaces: the influence of catalyst structure and the nature of active sites for the retro-Diels–Alder reaction. Beilstein Journal of Organic Chemistry, 12, 2181-2188. doi:10.3762/bjoc.12.208

Dessau, R. M. (1986). Catalysis of Diels–Alder reactions by zeolites. J. Chem. Soc., Chem. Commun., (15), 1167-1168. doi:10.1039/c39860001167

Palma, A., Artelsmair, M., Wu, G., Lu, X., Barrow, S. J., Uddin, N., … Scherman, O. A. (2017). Cucurbit[7]uril as a Supramolecular Artificial Enzyme for Diels-Alder Reactions. Angewandte Chemie International Edition, 56(49), 15688-15692. doi:10.1002/anie.201706487

Deuss, P. J., Popa, G., Slawin, A. M. Z., Laan, W., & Kamer, P. C. J. (2013). Artificial Copper Enzymes for Asymmetric Diels-Alder Reactions. ChemCatChem, 5(5), 1184-1191. doi:10.1002/cctc.201200671

Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121

Li, C., Paris, C., Martínez-Triguero, J., Boronat, M., Moliner, M., & Corma, A. (2018). Synthesis of reaction‐adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure‐directing agents. Nature Catalysis, 1(7), 547-554. doi:10.1038/s41929-018-0104-7

Bhan, A., Allian, A. D., Sunley, G. J., Law, D. J., & Iglesia, E. (2007). Specificity of Sites within Eight-Membered Ring Zeolite Channels for Carbonylation of Methyls to Acetyls. Journal of the American Chemical Society, 129(16), 4919-4924. doi:10.1021/ja070094d

Boronat, M., Martínez, C., & Corma, A. (2011). Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite. Physical Chemistry Chemical Physics, 13(7), 2603. doi:10.1039/c0cp01996h

Gounder, R., & Iglesia, E. (2009). Catalytic Consequences of Spatial Constraints and Acid Site Location for Monomolecular Alkane Activation on Zeolites. Journal of the American Chemical Society, 131(5), 1958-1971. doi:10.1021/ja808292c

Herrmann, S., & Iglesia, E. (2017). Elementary steps in acetone condensation reactions catalyzed by aluminosilicates with diverse void structures. Journal of Catalysis, 346, 134-153. doi:10.1016/j.jcat.2016.12.011

Gounder, R., & Iglesia, E. (2011). The Roles of Entropy and Enthalpy in Stabilizing Ion-Pairs at Transition States in Zeolite Acid Catalysis. Accounts of Chemical Research, 45(2), 229-238. doi:10.1021/ar200138n

Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Moliner, M., & Rey, F. (2006). Synthesis and Characterization of the All-Silica Pure Polymorph C and an Enriched Polymorph B Intergrowth of Zeolite Beta. Angewandte Chemie International Edition, 45(47), 8013-8015. doi:10.1002/anie.200603027

Moliner, M., Serna, P., Cantín, Á., Sastre, G., Díaz-Cabañas, M. J., & Corma, A. (2008). Synthesis of the Ti−Silicate Form of BEC Polymorph of β-Zeolite Assisted by Molecular Modeling. The Journal of Physical Chemistry C, 112(49), 19547-19554. doi:10.1021/jp805400u

Blasco, T., Camblor, M. A., Corma, A., Esteve, P., Guil, J. M., Martínez, A., … Valencia, S. (1998). Direct Synthesis and Characterization of Hydrophobic Aluminum-Free Ti−Beta Zeolite. The Journal of Physical Chemistry B, 102(1), 75-88. doi:10.1021/jp973288w

Corma, A., Navarro, M. T., & Pariente, J. P. (1994). Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons. Journal of the Chemical Society, Chemical Communications, (2), 147. doi:10.1039/c39940000147

Yoshizawa, M. (2006). Diels-Alder in Aqueous Molecular Hosts: Unusual Regioselectivity and Efficient Catalysis. Science, 312(5771), 251-254. doi:10.1126/science.1124985

Higgins, J. B., LaPierre, R. B., Schlenker, J. L., Rohrman, A. C., Wood, J. D., Kerr, G. T., & Rohrbaugh, W. J. (1988). The framework topology of zeolite beta. Zeolites, 8(6), 446-452. doi:10.1016/s0144-2449(88)80219-7

Moliner, M., & Corma, A. (2014). Advances in the synthesis of titanosilicates: From the medium pore TS-1 zeolite to highly-accessible ordered materials. Microporous and Mesoporous Materials, 189, 31-40. doi:10.1016/j.micromeso.2013.08.003

Boronat, M., Martínez-Sánchez, C., Law, D., & Corma, A. (2008). Enzyme-like Specificity in Zeolites: A Unique Site Position in Mordenite for Selective Carbonylation of Methanol and Dimethyl Ether with CO. Journal of the American Chemical Society, 130(48), 16316-16323. doi:10.1021/ja805607m

Corma, A. (2016). Heterogeneous Catalysis: Understanding for Designing, and Designing for Applications. Angewandte Chemie International Edition, 55(21), 6112-6113. doi:10.1002/anie.201601231

Bermejo-Deval, R., Assary, R. S., Nikolla, E., Moliner, M., Roman-Leshkov, Y., Hwang, S.-J., … Davis, M. E. (2012). Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. Proceedings of the National Academy of Sciences, 109(25), 9727-9732. doi:10.1073/pnas.1206708109

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record