Mostrar el registro sencillo del ítem
dc.contributor.author | Gallego-Sánchez, Eva María | es_ES |
dc.contributor.author | Paris, Cecilia | es_ES |
dc.contributor.author | Cantin Sanz, Angel | es_ES |
dc.contributor.author | Moliner Marin, Manuel | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.date.accessioned | 2020-11-17T04:31:59Z | |
dc.date.available | 2020-11-17T04:31:59Z | |
dc.date.issued | 2019-09-14 | es_ES |
dc.identifier.issn | 2041-6520 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/155115 | |
dc.description.abstract | [EN] By using a Diels-Alder (DA) reaction as a base case, we show that a pure silica zeolite acting as an entropy-trapping scaffold can be synthesized with an organic structure directing agent (OSDA) analogue of the transition state (TS) of the DA reaction. A cavity stabilization of the TS is observed with the corresponding decrease in the activation energy of the reaction. A lower enthalpy of activation and a larger decrease in entropy are obtained with the zeolite synthesized with the analogue of the DA TS when compared with other zeolitic structures. Those differences are maintained, while catalytic activity is increased, when active sites are introduced in the zeolite. The catalytic zeolitic system synthesized with the OSDA analogue of the TS shows conceptual similarities with "de novo design" of an artificial enzyme to perform DA reactions, in where a suitable scaffold of existing proteins is chosen, and computationally designed active sites able to catalyze the cycloaddition reaction are introduced. | es_ES |
dc.description.sponsorship | This work has been supported by the European Union through ERC-AdG-2014-671093 (SynCatMatch), by the Spanish Government-MINECO through "Severo Ochoa" (SEV-2016-0683) and RTI2018-101033, and by La Caixa Foundation through MITSPAIN SEED FUND (LCF/PR/MIT17/11820002). Eva M. Gallego acknowledges "La Caixa -Severo Ochoa" International PhD Fellowships (call 2015). The Electron Microscopy Service of the UPV is acknowledged for their help in sample characterization. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Chemical Science | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Conceptual similarities between zeolites and artificial enzymes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/C9SC02477H | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//LCF%2FPR%2FMIT17%2F11820002/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101033-B-I00/ES/DISEÑO DE CATALIZADORES MULTIFUNCIONALES PARA LA CONVERSION EFICIENTE DE BIOGAS Y GAS NATURAL A HIDROCARBUROS DE INTERES INDUSTRIAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Gallego-Sánchez, EM.; Paris, C.; Cantin Sanz, A.; Moliner Marin, M.; Corma Canós, A. (2019). Conceptual similarities between zeolites and artificial enzymes. Chemical Science. 10(34):8009-8015. https://doi.org/10.1039/C9SC02477H | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/C9SC02477H | es_ES |
dc.description.upvformatpinicio | 8009 | es_ES |
dc.description.upvformatpfin | 8015 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 34 | es_ES |
dc.identifier.pmid | 31853356 | es_ES |
dc.identifier.pmcid | PMC6837030 | es_ES |
dc.relation.pasarela | S\392385 | es_ES |
dc.contributor.funder | European Research Council | es_ES |
dc.contributor.funder | Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | European Commission | |
dc.description.references | Woodward, R. B., Sondheimer, F., Taub, D., Heusler, K., & McLamore, W. M. (1952). The Total Synthesis of Steroids1. Journal of the American Chemical Society, 74(17), 4223-4251. doi:10.1021/ja01137a001 | es_ES |
dc.description.references | Woodward, R. B., Bader, F. E., Bickel, H., Frey, A. J., & Kierstead, R. W. (1956). THE TOTAL SYNTHESIS OF RESERPINE. Journal of the American Chemical Society, 78(9), 2023-2025. doi:10.1021/ja01590a079 | es_ES |
dc.description.references | Pacheco, J. J., & Davis, M. E. (2014). Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural. Proceedings of the National Academy of Sciences, 111(23), 8363-8367. doi:10.1073/pnas.1408345111 | es_ES |
dc.description.references | Settle, A. E., Berstis, L., Rorrer, N. A., Roman-Leshkóv, Y., Beckham, G. T., Richards, R. M., & Vardon, D. R. (2017). Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds. Green Chemistry, 19(15), 3468-3492. doi:10.1039/c7gc00992e | es_ES |
dc.description.references | Page, M. I., & Jencks, W. P. (1971). Entropic Contributions to Rate Accelerations in Enzymic and Intramolecular Reactions and the Chelate Effect. Proceedings of the National Academy of Sciences, 68(8), 1678-1683. doi:10.1073/pnas.68.8.1678 | es_ES |
dc.description.references | Ho, G.-M., Huang, C.-J., Li, E. Y.-T., Hsu, S.-K., Wu, T., Zulueta, M. M. L., … Hung, S.-C. (2016). Unconventional exo selectivity in thermal normal-electron-demand Diels–Alder reactions. Scientific Reports, 6(1). doi:10.1038/srep35147 | es_ES |
dc.description.references | Marrocchi, A., Minuti, L., Taticchi, A., & Scheeren, H. W. (2001). High pressure and thermal Diels–Alder reaction of 2-vinyl-benzo[b]furan and 2-vinyl-benzo[b]thiophene. Synthesis of new condensed heterocycles. Tetrahedron, 57(23), 4959-4965. doi:10.1016/s0040-4020(01)00406-9 | es_ES |
dc.description.references | Seeley, D. A. (1972). Stereochemistry of the photochemical Diels-Alder reaction. Journal of the American Chemical Society, 94(12), 4378-4380. doi:10.1021/ja00767a077 | es_ES |
dc.description.references | Xu, F., Xiao, X., & Hoye, T. R. (2017). Photochemical Hexadehydro-Diels–Alder Reaction. Journal of the American Chemical Society, 139(25), 8400-8403. doi:10.1021/jacs.7b03832 | es_ES |
dc.description.references | Yamabe, S., Dai, T., & Minato, T. (1995). Fine Tuning [4 + 2] and [2 + 4] Diels-Alder Reactions Catalyzed by Lewis Acids. Journal of the American Chemical Society, 117(44), 10994-10997. doi:10.1021/ja00149a023 | es_ES |
dc.description.references | Yilmaz, Ö., Kus, N. S., Tunç, T., & Sahin, E. (2015). Diels–Alder reactions: The effects of catalyst on the addition reaction. Journal of Molecular Structure, 1098, 72-75. doi:10.1016/j.molstruc.2015.06.012 | es_ES |
dc.description.references | Song, S., Wu, G., Dai, W., Guan, N., & Li, L. (2016). Diels-Alder and dehydration reactions of furan derivatives with ethylene catalyzed by liquid Brønsted acids and Lewis acids. Journal of Molecular Catalysis A: Chemical, 420, 134-141. doi:10.1016/j.molcata.2016.04.023 | es_ES |
dc.description.references | Narayana Murthy, Y. V. S., & Pillai, C. N. (1991). Diels-Alder Reactions Catalyzed by Zeolites. Synthetic Communications, 21(6), 783-791. doi:10.1080/00397919108019757 | es_ES |
dc.description.references | Kubota, Y., Ishida, H., Nakamura, R., & Sugi, Y. (2003). Diels-Alder reaction catalyzed by ordered micro and mesoporous silicates. Studies in Surface Science and Catalysis, 749-752. doi:10.1016/s0167-2991(03)80492-5 | es_ES |
dc.description.references | GOMEZ, M., CANTIN, A., CORMA, A., & DELAHOZ, A. (2005). Use of different microporous and mesoporous materials as catalyst in the Diels–Alder and retro-Diels–Alder reaction between cyclopentadiene and p-benzoquinoneActivity of Al-, Ti- and Sn-doped silica. Journal of Molecular Catalysis A: Chemical, 240(1-2), 16-21. doi:10.1016/j.molcata.2005.06.030 | es_ES |
dc.description.references | Oikawa, H., & Tokiwano, T. (2004). Enzymatic catalysis of the Diels–Alder reaction in the biosynthesis of natural products. Nat. Prod. Rep., 21(3), 321-352. doi:10.1039/b305068h | es_ES |
dc.description.references | H. Oikawa , Comprehensive Natural Products II, Chem. And Bio. , ed. B.-L. Mander and H.-W. Liu , Oxford Elsevier , 2010 , pp. 277–314 | es_ES |
dc.description.references | Gordeev, E. G., & Ananikov, V. P. (2015). Computational Study of a Model System of Enzyme-Mediated [4+2] Cycloaddition Reaction. PLOS ONE, 10(4), e0119984. doi:10.1371/journal.pone.0119984 | es_ES |
dc.description.references | Oikawa, H. (2016). Nature’s Strategy for Catalyzing Diels-Alder Reaction. Cell Chemical Biology, 23(4), 429-430. doi:10.1016/j.chembiol.2016.04.002 | es_ES |
dc.description.references | Preiswerk, N., Beck, T., Schulz, J. D., Milovnik, P., Mayer, C., Siegel, J. B., … Hilvert, D. (2014). Impact of scaffold rigidity on the design and evolution of an artificial Diels-Alderase. Proceedings of the National Academy of Sciences, 111(22), 8013-8018. doi:10.1073/pnas.1401073111 | es_ES |
dc.description.references | Siegel, J. B., Zanghellini, A., Lovick, H. M., Kiss, G., Lambert, A. R., St.Clair, J. L., … Baker, D. (2010). Computational Design of an Enzyme Catalyst for a Stereoselective Bimolecular Diels-Alder Reaction. Science, 329(5989), 309-313. doi:10.1126/science.1190239 | es_ES |
dc.description.references | Braisted, A. C., & Schultz, P. G. (1990). An antibody-catalyzed bimolecular Diels-Alder reaction. Journal of the American Chemical Society, 112(20), 7430-7431. doi:10.1021/ja00176a073 | es_ES |
dc.description.references | Roelfes, G., & Feringa, B. L. (2005). DNA-Based Asymmetric Catalysis. Angewandte Chemie International Edition, 44(21), 3230-3232. doi:10.1002/anie.200500298 | es_ES |
dc.description.references | Reetz, M. T. (2012). Artificial Metalloenzymes as Catalysts in Stereoselective Diels-Alder Reactions. The Chemical Record, 12(4), 391-406. doi:10.1002/tcr.201100043 | es_ES |
dc.description.references | Onaka, M., Yamasaki, R., & Ookoshi, T. (1999). Catalysis by solid acids: Selective diels-alder reactions promoted by mesoporous aluminosilicates having honeycomb-like openings in nanometer dimensions. Studies in Surface Science and Catalysis, 139-142. doi:10.1016/s0167-2991(99)80057-3 | es_ES |
dc.description.references | Cantín, Á., Gomez, M. V., & de la Hoz, A. (2016). Diels–Alder reactions in confined spaces: the influence of catalyst structure and the nature of active sites for the retro-Diels–Alder reaction. Beilstein Journal of Organic Chemistry, 12, 2181-2188. doi:10.3762/bjoc.12.208 | es_ES |
dc.description.references | Dessau, R. M. (1986). Catalysis of Diels–Alder reactions by zeolites. J. Chem. Soc., Chem. Commun., (15), 1167-1168. doi:10.1039/c39860001167 | es_ES |
dc.description.references | Palma, A., Artelsmair, M., Wu, G., Lu, X., Barrow, S. J., Uddin, N., … Scherman, O. A. (2017). Cucurbit[7]uril as a Supramolecular Artificial Enzyme for Diels-Alder Reactions. Angewandte Chemie International Edition, 56(49), 15688-15692. doi:10.1002/anie.201706487 | es_ES |
dc.description.references | Deuss, P. J., Popa, G., Slawin, A. M. Z., Laan, W., & Kamer, P. C. J. (2013). Artificial Copper Enzymes for Asymmetric Diels-Alder Reactions. ChemCatChem, 5(5), 1184-1191. doi:10.1002/cctc.201200671 | es_ES |
dc.description.references | Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121 | es_ES |
dc.description.references | Li, C., Paris, C., Martínez-Triguero, J., Boronat, M., Moliner, M., & Corma, A. (2018). Synthesis of reaction‐adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure‐directing agents. Nature Catalysis, 1(7), 547-554. doi:10.1038/s41929-018-0104-7 | es_ES |
dc.description.references | Bhan, A., Allian, A. D., Sunley, G. J., Law, D. J., & Iglesia, E. (2007). Specificity of Sites within Eight-Membered Ring Zeolite Channels for Carbonylation of Methyls to Acetyls. Journal of the American Chemical Society, 129(16), 4919-4924. doi:10.1021/ja070094d | es_ES |
dc.description.references | Boronat, M., Martínez, C., & Corma, A. (2011). Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite. Physical Chemistry Chemical Physics, 13(7), 2603. doi:10.1039/c0cp01996h | es_ES |
dc.description.references | Gounder, R., & Iglesia, E. (2009). Catalytic Consequences of Spatial Constraints and Acid Site Location for Monomolecular Alkane Activation on Zeolites. Journal of the American Chemical Society, 131(5), 1958-1971. doi:10.1021/ja808292c | es_ES |
dc.description.references | Herrmann, S., & Iglesia, E. (2017). Elementary steps in acetone condensation reactions catalyzed by aluminosilicates with diverse void structures. Journal of Catalysis, 346, 134-153. doi:10.1016/j.jcat.2016.12.011 | es_ES |
dc.description.references | Gounder, R., & Iglesia, E. (2011). The Roles of Entropy and Enthalpy in Stabilizing Ion-Pairs at Transition States in Zeolite Acid Catalysis. Accounts of Chemical Research, 45(2), 229-238. doi:10.1021/ar200138n | es_ES |
dc.description.references | Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Moliner, M., & Rey, F. (2006). Synthesis and Characterization of the All-Silica Pure Polymorph C and an Enriched Polymorph B Intergrowth of Zeolite Beta. Angewandte Chemie International Edition, 45(47), 8013-8015. doi:10.1002/anie.200603027 | es_ES |
dc.description.references | Moliner, M., Serna, P., Cantín, Á., Sastre, G., Díaz-Cabañas, M. J., & Corma, A. (2008). Synthesis of the Ti−Silicate Form of BEC Polymorph of β-Zeolite Assisted by Molecular Modeling. The Journal of Physical Chemistry C, 112(49), 19547-19554. doi:10.1021/jp805400u | es_ES |
dc.description.references | Blasco, T., Camblor, M. A., Corma, A., Esteve, P., Guil, J. M., Martínez, A., … Valencia, S. (1998). Direct Synthesis and Characterization of Hydrophobic Aluminum-Free Ti−Beta Zeolite. The Journal of Physical Chemistry B, 102(1), 75-88. doi:10.1021/jp973288w | es_ES |
dc.description.references | Corma, A., Navarro, M. T., & Pariente, J. P. (1994). Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons. Journal of the Chemical Society, Chemical Communications, (2), 147. doi:10.1039/c39940000147 | es_ES |
dc.description.references | Yoshizawa, M. (2006). Diels-Alder in Aqueous Molecular Hosts: Unusual Regioselectivity and Efficient Catalysis. Science, 312(5771), 251-254. doi:10.1126/science.1124985 | es_ES |
dc.description.references | Higgins, J. B., LaPierre, R. B., Schlenker, J. L., Rohrman, A. C., Wood, J. D., Kerr, G. T., & Rohrbaugh, W. J. (1988). The framework topology of zeolite beta. Zeolites, 8(6), 446-452. doi:10.1016/s0144-2449(88)80219-7 | es_ES |
dc.description.references | Moliner, M., & Corma, A. (2014). Advances in the synthesis of titanosilicates: From the medium pore TS-1 zeolite to highly-accessible ordered materials. Microporous and Mesoporous Materials, 189, 31-40. doi:10.1016/j.micromeso.2013.08.003 | es_ES |
dc.description.references | Boronat, M., Martínez-Sánchez, C., Law, D., & Corma, A. (2008). Enzyme-like Specificity in Zeolites: A Unique Site Position in Mordenite for Selective Carbonylation of Methanol and Dimethyl Ether with CO. Journal of the American Chemical Society, 130(48), 16316-16323. doi:10.1021/ja805607m | es_ES |
dc.description.references | Corma, A. (2016). Heterogeneous Catalysis: Understanding for Designing, and Designing for Applications. Angewandte Chemie International Edition, 55(21), 6112-6113. doi:10.1002/anie.201601231 | es_ES |
dc.description.references | Bermejo-Deval, R., Assary, R. S., Nikolla, E., Moliner, M., Roman-Leshkov, Y., Hwang, S.-J., … Davis, M. E. (2012). Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. Proceedings of the National Academy of Sciences, 109(25), 9727-9732. doi:10.1073/pnas.1206708109 | es_ES |