- -

Conceptual similarities between zeolites and artificial enzymes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Conceptual similarities between zeolites and artificial enzymes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gallego-Sánchez, Eva María es_ES
dc.contributor.author Paris, Cecilia es_ES
dc.contributor.author Cantin Sanz, Angel es_ES
dc.contributor.author Moliner Marin, Manuel es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2020-11-17T04:31:59Z
dc.date.available 2020-11-17T04:31:59Z
dc.date.issued 2019-09-14 es_ES
dc.identifier.issn 2041-6520 es_ES
dc.identifier.uri http://hdl.handle.net/10251/155115
dc.description.abstract [EN] By using a Diels-Alder (DA) reaction as a base case, we show that a pure silica zeolite acting as an entropy-trapping scaffold can be synthesized with an organic structure directing agent (OSDA) analogue of the transition state (TS) of the DA reaction. A cavity stabilization of the TS is observed with the corresponding decrease in the activation energy of the reaction. A lower enthalpy of activation and a larger decrease in entropy are obtained with the zeolite synthesized with the analogue of the DA TS when compared with other zeolitic structures. Those differences are maintained, while catalytic activity is increased, when active sites are introduced in the zeolite. The catalytic zeolitic system synthesized with the OSDA analogue of the TS shows conceptual similarities with "de novo design" of an artificial enzyme to perform DA reactions, in where a suitable scaffold of existing proteins is chosen, and computationally designed active sites able to catalyze the cycloaddition reaction are introduced. es_ES
dc.description.sponsorship This work has been supported by the European Union through ERC-AdG-2014-671093 (SynCatMatch), by the Spanish Government-MINECO through "Severo Ochoa" (SEV-2016-0683) and RTI2018-101033, and by La Caixa Foundation through MITSPAIN SEED FUND (LCF/PR/MIT17/11820002). Eva M. Gallego acknowledges "La Caixa -Severo Ochoa" International PhD Fellowships (call 2015). The Electron Microscopy Service of the UPV is acknowledged for their help in sample characterization. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Science es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Conceptual similarities between zeolites and artificial enzymes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/C9SC02477H es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
dc.relation.projectID info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//LCF%2FPR%2FMIT17%2F11820002/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101033-B-I00/ES/DISEÑO DE CATALIZADORES MULTIFUNCIONALES PARA LA CONVERSION EFICIENTE DE BIOGAS Y GAS NATURAL A HIDROCARBUROS DE INTERES INDUSTRIAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Gallego-Sánchez, EM.; Paris, C.; Cantin Sanz, A.; Moliner Marin, M.; Corma Canós, A. (2019). Conceptual similarities between zeolites and artificial enzymes. Chemical Science. 10(34):8009-8015. https://doi.org/10.1039/C9SC02477H es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/C9SC02477H es_ES
dc.description.upvformatpinicio 8009 es_ES
dc.description.upvformatpfin 8015 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 34 es_ES
dc.identifier.pmid 31853356 es_ES
dc.identifier.pmcid PMC6837030 es_ES
dc.relation.pasarela S\392385 es_ES
dc.contributor.funder European Research Council es_ES
dc.contributor.funder Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Commission
dc.description.references Woodward, R. B., Sondheimer, F., Taub, D., Heusler, K., & McLamore, W. M. (1952). The Total Synthesis of Steroids1. Journal of the American Chemical Society, 74(17), 4223-4251. doi:10.1021/ja01137a001 es_ES
dc.description.references Woodward, R. B., Bader, F. E., Bickel, H., Frey, A. J., & Kierstead, R. W. (1956). THE TOTAL SYNTHESIS OF RESERPINE. Journal of the American Chemical Society, 78(9), 2023-2025. doi:10.1021/ja01590a079 es_ES
dc.description.references Pacheco, J. J., & Davis, M. E. (2014). Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural. Proceedings of the National Academy of Sciences, 111(23), 8363-8367. doi:10.1073/pnas.1408345111 es_ES
dc.description.references Settle, A. E., Berstis, L., Rorrer, N. A., Roman-Leshkóv, Y., Beckham, G. T., Richards, R. M., & Vardon, D. R. (2017). Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds. Green Chemistry, 19(15), 3468-3492. doi:10.1039/c7gc00992e es_ES
dc.description.references Page, M. I., & Jencks, W. P. (1971). Entropic Contributions to Rate Accelerations in Enzymic and Intramolecular Reactions and the Chelate Effect. Proceedings of the National Academy of Sciences, 68(8), 1678-1683. doi:10.1073/pnas.68.8.1678 es_ES
dc.description.references Ho, G.-M., Huang, C.-J., Li, E. Y.-T., Hsu, S.-K., Wu, T., Zulueta, M. M. L., … Hung, S.-C. (2016). Unconventional exo selectivity in thermal normal-electron-demand Diels–Alder reactions. Scientific Reports, 6(1). doi:10.1038/srep35147 es_ES
dc.description.references Marrocchi, A., Minuti, L., Taticchi, A., & Scheeren, H. W. (2001). High pressure and thermal Diels–Alder reaction of 2-vinyl-benzo[b]furan and 2-vinyl-benzo[b]thiophene. Synthesis of new condensed heterocycles. Tetrahedron, 57(23), 4959-4965. doi:10.1016/s0040-4020(01)00406-9 es_ES
dc.description.references Seeley, D. A. (1972). Stereochemistry of the photochemical Diels-Alder reaction. Journal of the American Chemical Society, 94(12), 4378-4380. doi:10.1021/ja00767a077 es_ES
dc.description.references Xu, F., Xiao, X., & Hoye, T. R. (2017). Photochemical Hexadehydro-Diels–Alder Reaction. Journal of the American Chemical Society, 139(25), 8400-8403. doi:10.1021/jacs.7b03832 es_ES
dc.description.references Yamabe, S., Dai, T., & Minato, T. (1995). Fine Tuning [4 + 2] and [2 + 4] Diels-Alder Reactions Catalyzed by Lewis Acids. Journal of the American Chemical Society, 117(44), 10994-10997. doi:10.1021/ja00149a023 es_ES
dc.description.references Yilmaz, Ö., Kus, N. S., Tunç, T., & Sahin, E. (2015). Diels–Alder reactions: The effects of catalyst on the addition reaction. Journal of Molecular Structure, 1098, 72-75. doi:10.1016/j.molstruc.2015.06.012 es_ES
dc.description.references Song, S., Wu, G., Dai, W., Guan, N., & Li, L. (2016). Diels-Alder and dehydration reactions of furan derivatives with ethylene catalyzed by liquid Brønsted acids and Lewis acids. Journal of Molecular Catalysis A: Chemical, 420, 134-141. doi:10.1016/j.molcata.2016.04.023 es_ES
dc.description.references Narayana Murthy, Y. V. S., & Pillai, C. N. (1991). Diels-Alder Reactions Catalyzed by Zeolites. Synthetic Communications, 21(6), 783-791. doi:10.1080/00397919108019757 es_ES
dc.description.references Kubota, Y., Ishida, H., Nakamura, R., & Sugi, Y. (2003). Diels-Alder reaction catalyzed by ordered micro and mesoporous silicates. Studies in Surface Science and Catalysis, 749-752. doi:10.1016/s0167-2991(03)80492-5 es_ES
dc.description.references GOMEZ, M., CANTIN, A., CORMA, A., & DELAHOZ, A. (2005). Use of different microporous and mesoporous materials as catalyst in the Diels–Alder and retro-Diels–Alder reaction between cyclopentadiene and p-benzoquinoneActivity of Al-, Ti- and Sn-doped silica. Journal of Molecular Catalysis A: Chemical, 240(1-2), 16-21. doi:10.1016/j.molcata.2005.06.030 es_ES
dc.description.references Oikawa, H., & Tokiwano, T. (2004). Enzymatic catalysis of the Diels–Alder reaction in the biosynthesis of natural products. Nat. Prod. Rep., 21(3), 321-352. doi:10.1039/b305068h es_ES
dc.description.references H. Oikawa , Comprehensive Natural Products II, Chem. And Bio. , ed. B.-L. Mander and H.-W. Liu , Oxford Elsevier , 2010 , pp. 277–314 es_ES
dc.description.references Gordeev, E. G., & Ananikov, V. P. (2015). Computational Study of a Model System of Enzyme-Mediated [4+2] Cycloaddition Reaction. PLOS ONE, 10(4), e0119984. doi:10.1371/journal.pone.0119984 es_ES
dc.description.references Oikawa, H. (2016). Nature’s Strategy for Catalyzing Diels-Alder Reaction. Cell Chemical Biology, 23(4), 429-430. doi:10.1016/j.chembiol.2016.04.002 es_ES
dc.description.references Preiswerk, N., Beck, T., Schulz, J. D., Milovnik, P., Mayer, C., Siegel, J. B., … Hilvert, D. (2014). Impact of scaffold rigidity on the design and evolution of an artificial Diels-Alderase. Proceedings of the National Academy of Sciences, 111(22), 8013-8018. doi:10.1073/pnas.1401073111 es_ES
dc.description.references Siegel, J. B., Zanghellini, A., Lovick, H. M., Kiss, G., Lambert, A. R., St.Clair, J. L., … Baker, D. (2010). Computational Design of an Enzyme Catalyst for a Stereoselective Bimolecular Diels-Alder Reaction. Science, 329(5989), 309-313. doi:10.1126/science.1190239 es_ES
dc.description.references Braisted, A. C., & Schultz, P. G. (1990). An antibody-catalyzed bimolecular Diels-Alder reaction. Journal of the American Chemical Society, 112(20), 7430-7431. doi:10.1021/ja00176a073 es_ES
dc.description.references Roelfes, G., & Feringa, B. L. (2005). DNA-Based Asymmetric Catalysis. Angewandte Chemie International Edition, 44(21), 3230-3232. doi:10.1002/anie.200500298 es_ES
dc.description.references Reetz, M. T. (2012). Artificial Metalloenzymes as Catalysts in Stereoselective Diels-Alder Reactions. The Chemical Record, 12(4), 391-406. doi:10.1002/tcr.201100043 es_ES
dc.description.references Onaka, M., Yamasaki, R., & Ookoshi, T. (1999). Catalysis by solid acids: Selective diels-alder reactions promoted by mesoporous aluminosilicates having honeycomb-like openings in nanometer dimensions. Studies in Surface Science and Catalysis, 139-142. doi:10.1016/s0167-2991(99)80057-3 es_ES
dc.description.references Cantín, Á., Gomez, M. V., & de la Hoz, A. (2016). Diels–Alder reactions in confined spaces: the influence of catalyst structure and the nature of active sites for the retro-Diels–Alder reaction. Beilstein Journal of Organic Chemistry, 12, 2181-2188. doi:10.3762/bjoc.12.208 es_ES
dc.description.references Dessau, R. M. (1986). Catalysis of Diels–Alder reactions by zeolites. J. Chem. Soc., Chem. Commun., (15), 1167-1168. doi:10.1039/c39860001167 es_ES
dc.description.references Palma, A., Artelsmair, M., Wu, G., Lu, X., Barrow, S. J., Uddin, N., … Scherman, O. A. (2017). Cucurbit[7]uril as a Supramolecular Artificial Enzyme for Diels-Alder Reactions. Angewandte Chemie International Edition, 56(49), 15688-15692. doi:10.1002/anie.201706487 es_ES
dc.description.references Deuss, P. J., Popa, G., Slawin, A. M. Z., Laan, W., & Kamer, P. C. J. (2013). Artificial Copper Enzymes for Asymmetric Diels-Alder Reactions. ChemCatChem, 5(5), 1184-1191. doi:10.1002/cctc.201200671 es_ES
dc.description.references Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121 es_ES
dc.description.references Li, C., Paris, C., Martínez-Triguero, J., Boronat, M., Moliner, M., & Corma, A. (2018). Synthesis of reaction‐adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure‐directing agents. Nature Catalysis, 1(7), 547-554. doi:10.1038/s41929-018-0104-7 es_ES
dc.description.references Bhan, A., Allian, A. D., Sunley, G. J., Law, D. J., & Iglesia, E. (2007). Specificity of Sites within Eight-Membered Ring Zeolite Channels for Carbonylation of Methyls to Acetyls. Journal of the American Chemical Society, 129(16), 4919-4924. doi:10.1021/ja070094d es_ES
dc.description.references Boronat, M., Martínez, C., & Corma, A. (2011). Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite. Physical Chemistry Chemical Physics, 13(7), 2603. doi:10.1039/c0cp01996h es_ES
dc.description.references Gounder, R., & Iglesia, E. (2009). Catalytic Consequences of Spatial Constraints and Acid Site Location for Monomolecular Alkane Activation on Zeolites. Journal of the American Chemical Society, 131(5), 1958-1971. doi:10.1021/ja808292c es_ES
dc.description.references Herrmann, S., & Iglesia, E. (2017). Elementary steps in acetone condensation reactions catalyzed by aluminosilicates with diverse void structures. Journal of Catalysis, 346, 134-153. doi:10.1016/j.jcat.2016.12.011 es_ES
dc.description.references Gounder, R., & Iglesia, E. (2011). The Roles of Entropy and Enthalpy in Stabilizing Ion-Pairs at Transition States in Zeolite Acid Catalysis. Accounts of Chemical Research, 45(2), 229-238. doi:10.1021/ar200138n es_ES
dc.description.references Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Moliner, M., & Rey, F. (2006). Synthesis and Characterization of the All-Silica Pure Polymorph C and an Enriched Polymorph B Intergrowth of Zeolite Beta. Angewandte Chemie International Edition, 45(47), 8013-8015. doi:10.1002/anie.200603027 es_ES
dc.description.references Moliner, M., Serna, P., Cantín, Á., Sastre, G., Díaz-Cabañas, M. J., & Corma, A. (2008). Synthesis of the Ti−Silicate Form of BEC Polymorph of β-Zeolite Assisted by Molecular Modeling. The Journal of Physical Chemistry C, 112(49), 19547-19554. doi:10.1021/jp805400u es_ES
dc.description.references Blasco, T., Camblor, M. A., Corma, A., Esteve, P., Guil, J. M., Martínez, A., … Valencia, S. (1998). Direct Synthesis and Characterization of Hydrophobic Aluminum-Free Ti−Beta Zeolite. The Journal of Physical Chemistry B, 102(1), 75-88. doi:10.1021/jp973288w es_ES
dc.description.references Corma, A., Navarro, M. T., & Pariente, J. P. (1994). Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons. Journal of the Chemical Society, Chemical Communications, (2), 147. doi:10.1039/c39940000147 es_ES
dc.description.references Yoshizawa, M. (2006). Diels-Alder in Aqueous Molecular Hosts: Unusual Regioselectivity and Efficient Catalysis. Science, 312(5771), 251-254. doi:10.1126/science.1124985 es_ES
dc.description.references Higgins, J. B., LaPierre, R. B., Schlenker, J. L., Rohrman, A. C., Wood, J. D., Kerr, G. T., & Rohrbaugh, W. J. (1988). The framework topology of zeolite beta. Zeolites, 8(6), 446-452. doi:10.1016/s0144-2449(88)80219-7 es_ES
dc.description.references Moliner, M., & Corma, A. (2014). Advances in the synthesis of titanosilicates: From the medium pore TS-1 zeolite to highly-accessible ordered materials. Microporous and Mesoporous Materials, 189, 31-40. doi:10.1016/j.micromeso.2013.08.003 es_ES
dc.description.references Boronat, M., Martínez-Sánchez, C., Law, D., & Corma, A. (2008). Enzyme-like Specificity in Zeolites: A Unique Site Position in Mordenite for Selective Carbonylation of Methanol and Dimethyl Ether with CO. Journal of the American Chemical Society, 130(48), 16316-16323. doi:10.1021/ja805607m es_ES
dc.description.references Corma, A. (2016). Heterogeneous Catalysis: Understanding for Designing, and Designing for Applications. Angewandte Chemie International Edition, 55(21), 6112-6113. doi:10.1002/anie.201601231 es_ES
dc.description.references Bermejo-Deval, R., Assary, R. S., Nikolla, E., Moliner, M., Roman-Leshkov, Y., Hwang, S.-J., … Davis, M. E. (2012). Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. Proceedings of the National Academy of Sciences, 109(25), 9727-9732. doi:10.1073/pnas.1206708109 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem