- -

Ice-Templating for the Elaboration of Oxygen Permeation Asymmetric Tubular Membrane with Radial Oriented Porosity

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Ice-Templating for the Elaboration of Oxygen Permeation Asymmetric Tubular Membrane with Radial Oriented Porosity

Show full item record

Gaudillere, CC.; García-Fayos, J.; Plaza-Belda, J.; Serra Alfaro, JM. (2019). Ice-Templating for the Elaboration of Oxygen Permeation Asymmetric Tubular Membrane with Radial Oriented Porosity. Ceramics. 2(2):246-259. https://doi.org/10.3390/ceramics2020020

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/155116

Files in this item

Item Metadata

Title: Ice-Templating for the Elaboration of Oxygen Permeation Asymmetric Tubular Membrane with Radial Oriented Porosity
Author: Gaudillere, Cyril Christian García-Fayos, Julio Plaza-Belda, Jorge Serra Alfaro, José Manuel
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
[EN] An original asymmetric tubular membrane for oxygen production applications was manufactured in a two-step process. A 3 mol% Y2O3 stabilized ZrO2 (3YSZ) porous tubular support was manufactured by the freeze-casting ...[+]
Subjects: Ice templating , Freeze-casting , Tubular asymmetric membrane , Oxygen permeation , Perovskite material
Copyrigths: Reconocimiento (by)
Source:
Ceramics. (eissn: 2571-6131 )
DOI: 10.3390/ceramics2020020
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/ceramics2020020
Project ID:
info:eu-repo/grantAgreement/MINECO//ENE2014-57651-R/ES/ALMACENAMIENTO DE ENERGIA VIA REDUCCION DE CO2 A COMBUSTIBLES Y PRODUCTOS QUIMICOS/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Thanks:
Funding from the Spanish Government (ENE2014-57651 and SEV-2016-0683 grants) is kindly acknowledged.
Type: Artículo

References

Hashim, S. S., Mohamed, A. R., & Bhatia, S. (2011). Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation. Renewable and Sustainable Energy Reviews, 15(2), 1284-1293. doi:10.1016/j.rser.2010.10.002

Rajesh, S., Pereira, J. R. S., Figueiredo, F. M. L., & Marques, F. M. B. (2014). Performance of Carbonate - LaCoO3 and La0.8Sr0.2Co0.2Fe0.8O3-δ Composite Cathodes under Carbon Dioxide. Electrochimica Acta, 125, 435-442. doi:10.1016/j.electacta.2014.01.157

Serra, J. M., Garcia-Fayos, J., Baumann, S., Schulze-Küppers, F., & Meulenberg, W. A. (2013). Oxygen permeation through tape-cast asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3−δ membranes. Journal of Membrane Science, 447, 297-305. doi:10.1016/j.memsci.2013.07.030 [+]
Hashim, S. S., Mohamed, A. R., & Bhatia, S. (2011). Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation. Renewable and Sustainable Energy Reviews, 15(2), 1284-1293. doi:10.1016/j.rser.2010.10.002

Rajesh, S., Pereira, J. R. S., Figueiredo, F. M. L., & Marques, F. M. B. (2014). Performance of Carbonate - LaCoO3 and La0.8Sr0.2Co0.2Fe0.8O3-δ Composite Cathodes under Carbon Dioxide. Electrochimica Acta, 125, 435-442. doi:10.1016/j.electacta.2014.01.157

Serra, J. M., Garcia-Fayos, J., Baumann, S., Schulze-Küppers, F., & Meulenberg, W. A. (2013). Oxygen permeation through tape-cast asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3−δ membranes. Journal of Membrane Science, 447, 297-305. doi:10.1016/j.memsci.2013.07.030

Gaudillere, C., Garcia-Fayos, J., & Serra, J. M. (2014). Enhancing oxygen permeation through hierarchically-structured perovskite membranes elaborated by freeze-casting. Journal of Materials Chemistry A, 2(11), 3828. doi:10.1039/c3ta14069e

Deville, S. (2008). Freeze-Casting of Porous Ceramics: A Review of Current Achievements and Issues. Advanced Engineering Materials, 10(3), 155-169. doi:10.1002/adem.200700270

Gaudillere, C., Garcia-Fayos, J., Balaguer, M., & Serra, J. M. (2014). Enhanced Oxygen Separation through Robust Freeze-Cast Bilayered Dual-Phase Membranes. ChemSusChem, 7(9), 2554-2561. doi:10.1002/cssc.201402324

Hong, L., & Chua, W. (2002). Fabrication of a dense La0.2Sr0.8CoO3−δ/CoO composite membrane by utilizing the electroless cobalt plating technique. Journal of Membrane Science, 198(1), 95-108. doi:10.1016/s0376-7388(01)00651-2

Middleton, H., Diethelm, S., Ihringer, R., Larrain, D., Sfeir, J., & Van Herle, J. (2004). Co-casting and co-sintering of porous MgO support plates with thin dense perovskite layers of LaSrFeCoO3. Journal of the European Ceramic Society, 24(6), 1083-1086. doi:10.1016/s0955-2219(03)00554-5

Lee, T. (1997). Oxygen permeation in dense SrCo0.8Fe0.2O3 − δ membranes: Surface exchange kinetics versus bulk diffusion. Solid State Ionics, 100(1-2), 77-85. doi:10.1016/s0167-2738(97)00257-9

Balachandran, U., Dusek, J. T., Maiya, P. S., Ma, B., Mieville, R. L., Kleefisch, M. S., & Udovich, C. A. (1997). Ceramic membrane reactor for converting methane to syngas. Catalysis Today, 36(3), 265-272. doi:10.1016/s0920-5861(96)00229-5

Balachandran, U., Dusek, J. T., Mieville, R. L., Poeppel, R. B., Kleefisch, M. S., Pei, S., … Bose, A. C. (1995). Dense ceramic membranes for partial oxidation of methane to syngas. Applied Catalysis A: General, 133(1), 19-29. doi:10.1016/0926-860x(95)00159-x

Li, S., Jin, W., Huang, P., Xu, N., Shi, J., & Lin, Y. . (2000). Tubular lanthanum cobaltite perovskite type membrane for oxygen permeation. Journal of Membrane Science, 166(1), 51-61. doi:10.1016/s0376-7388(99)00244-6

Liu, Z., Zhang, G., Dong, X., Jiang, W., Jin, W., & Xu, N. (2012). Fabrication of asymmetric tubular mixed-conducting dense membranes by a combined spin-spraying and co-sintering process. Journal of Membrane Science, 415-416, 313-319. doi:10.1016/j.memsci.2012.05.011

ITO, W., NAGAI, T., & SAKON, T. (2007). Oxygen separation from compressed air using a mixed conducting perovskite-type oxide membrane. Solid State Ionics, 178(11-12), 809-816. doi:10.1016/j.ssi.2007.02.031

Zhu, X., Sun, S., Cong, Y., & Yang, W. (2009). Operation of perovskite membrane under vacuum and elevated pressures for high-purity oxygen production. Journal of Membrane Science, 345(1-2), 47-52. doi:10.1016/j.memsci.2009.08.020

Moon, J.-W., Hwang, H.-J., Awano, M., & Maeda, K. (2003). Preparation of NiO–YSZ tubular support with radially aligned pore channels. Materials Letters, 57(8), 1428-1434. doi:10.1016/s0167-577x(02)01002-9

Moon, Y.-W., Shin, K.-H., Koh, Y.-H., Yook, S.-W., Han, C.-M., & Kim, H.-E. (2012). Novel Ceramic/Camphene-Based Co-Extrusion for Highly Aligned Porous Alumina Ceramic Tubes. Journal of the American Ceramic Society, 95(6), 1803-1806. doi:10.1111/j.1551-2916.2012.05210.x

Liu, R., Yuan, J., & Wang, C. (2013). A novel way to fabricate tubular porous mullite membrane supports by TBA-based freezing casting method. Journal of the European Ceramic Society, 33(15-16), 3249-3256. doi:10.1016/j.jeurceramsoc.2013.06.005

Seuba, J., Leloup, J., Richaud, S., Deville, S., Guizard, C., & Stevenson, A. J. (2017). Fabrication of ice-templated tubes by rotational freezing: Microstructure, strength, and permeability. Journal of the European Ceramic Society, 37(6), 2423-2429. doi:10.1016/j.jeurceramsoc.2017.01.014

Knibbe, R., Hjelm, J., Menon, M., Pryds, N., Søgaard, M., Wang, H. J., & Neufeld, K. (2010). Cathode-Electrolyte Interfaces with CGO Barrier Layers in SOFC. Journal of the American Ceramic Society, 93(9), 2877-2883. doi:10.1111/j.1551-2916.2010.03763.x

Qiu, L. (2003). Ln1−xSrxCo1−yFeyO3−δ (Ln=Pr, Nd, Gd; x=0.2, 0.3) for the electrodes of solid oxide fuel cells. Solid State Ionics, 158(1-2), 55-65. doi:10.1016/s0167-2738(02)00757-9

ZHOU, X. (2004). Electrical conductivity and stability of Gd-doped ceria/Y-doped zirconia ceramics and thin films. Solid State Ionics, 175(1-4), 19-22. doi:10.1016/j.ssi.2004.09.040

Mori, M. (2003). Evaluation of Ni and Ti-doped Y2O3 stabilized ZrO2 cermet as an anode in high-temperature solid oxide fuel cells. Solid State Ionics, 160(1-2), 1-14. doi:10.1016/s0167-2738(03)00144-9

Schulze-Küppers, F., Baumann, S., Tietz, F., Bouwmeester, H. J. M., & Meulenberg, W. A. (2014). Towards the fabrication of La0.98−xSrxCo0.2Fe0.8O3−δ perovskite-type oxygen transport membranes. Journal of the European Ceramic Society, 34(15), 3741-3748. doi:10.1016/j.jeurceramsoc.2014.06.012

PEREZCOLL, D., NUNEZ, P., ABRANTES, J., FAGG, D., KHARTON, V., & FRADE, J. (2005). Effects of firing conditions and addition of Co on bulk and grain boundary properties of CGO. Solid State Ionics, 176(37-38), 2799-2805. doi:10.1016/j.ssi.2005.06.023

Baque, L. C., Padmasree, K., Ceniceros Reyes, M. A., Troiani, H., Arce, M. D., Serquis, A., & Soldati, A. (2016). Effect of Cobalt-Doped Electrolyte on the Electrochemical Performance of LSCFO/CGO Interfaces. ECS Transactions, 72(7), 117-121. doi:10.1149/07207.0117ecst

Balaguer, M., Solís, C., Roitsch, S., & Serra, J. M. (2014). Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2−δ+ Co 2 mol%. Dalton Trans., 43(11), 4305-4312. doi:10.1039/c3dt52167b

Gaudillere, C., Garcia-Fayos, J., & Serra, J. M. (2014). Oxygen Permeation Improvement under CO2-Rich Environments through Catalytic Activation of Hierarchically Structured Perovskite Membranes. ChemPlusChem, n/a-n/a. doi:10.1002/cplu.201402142

Garcia-Fayos, J., Søgaard, M., Kaiser, A., & Serra, J. M. (2019). Oxygen permeation studies in surface Pd-activated asymmetric Ce0.9Gd0.1O1.95 membranes for application in CO2 and CH4 environments. Separation and Purification Technology, 216, 58-64. doi:10.1016/j.seppur.2019.01.068

Bouwmeester, H., & Burggraaf, A. (1997). Dense Ceramic Membranes for Oxygen Separation. Handbook of Solid State Electrochemistry. doi:10.1201/9781420049305.ch14

Escribano, J. A., García-Fayos, J., & Serra, J. M. (2017). Shaping of 3YSZ porous substrates for oxygen separation membranes. Journal of the European Ceramic Society, 37(16), 5223-5231. doi:10.1016/j.jeurceramsoc.2017.05.032

Lobera, M. P., Balaguer, M., García-Fayos, J., & Serra, J. M. (2017). Catalytic Oxide-Ion Conducting Materials for Surface Activation of Ba0.5Sr0.5Co0.8Fe0.2O3-δMembranes. ChemistrySelect, 2(10), 2949-2955. doi:10.1002/slct.201700530

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record