- -

Ice-Templating for the Elaboration of Oxygen Permeation Asymmetric Tubular Membrane with Radial Oriented Porosity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ice-Templating for the Elaboration of Oxygen Permeation Asymmetric Tubular Membrane with Radial Oriented Porosity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gaudillere, Cyril Christian es_ES
dc.contributor.author García-Fayos, Julio es_ES
dc.contributor.author Plaza-Belda, Jorge es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.date.accessioned 2020-11-17T04:32:01Z
dc.date.available 2020-11-17T04:32:01Z
dc.date.issued 2019-04-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/155116
dc.description.abstract [EN] An original asymmetric tubular membrane for oxygen production applications was manufactured in a two-step process. A 3 mol% Y2O3 stabilized ZrO2 (3YSZ) porous tubular support was manufactured by the freeze-casting technique, offering a hierarchical and radial-oriented porosity of about 15 µm in width, separated by fully densified walls of about 2 µm thick, suggesting low pressure drop and boosted gas transport. The external surface of the support was successively dip-coated to get a Ce0.8Gd0.2O2¿¿ ¿ 5mol%Co (CGO-Co) interlayer of 80 µm in thickness and an outer dense layer of La0.6Sr0.4Co0.2Fe0.8O3¿¿ (LSCF) with a thickness of 30 µm. The whole tubular membrane presents both uniform geometric characteristics and microstructure all along its length. Chemical reactivity between each layer was studied by coupling X-Ray Diffraction (XRD) analysis and Energy Dispersive X-Ray spectroscopy (EDX) mapping at each step of the manufacturing process. Cation interdiffusion between different phases was discarded, confirming the compatibility of this tri-layer asymmetric ceramic membrane for oxygen production purposes. For the first time, a freeze-cast tubular membrane has been evaluated for oxygen permeation, exhibiting a value of 0.31 mL·min¿1·cm¿2 at 1000 °C under air and argon as feed and sweep gases, respectively. Finally, under the same conditions and increasing the oxygen partial pressure to get pure oxygen as feed, the oxygen permeation reached 1.07 mL·min¿1·cm¿2. es_ES
dc.description.sponsorship Funding from the Spanish Government (ENE2014-57651 and SEV-2016-0683 grants) is kindly acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Ceramics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Ice templating es_ES
dc.subject Freeze-casting es_ES
dc.subject Tubular asymmetric membrane es_ES
dc.subject Oxygen permeation es_ES
dc.subject Perovskite material es_ES
dc.title Ice-Templating for the Elaboration of Oxygen Permeation Asymmetric Tubular Membrane with Radial Oriented Porosity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ceramics2020020 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2014-57651-R/ES/ALMACENAMIENTO DE ENERGIA VIA REDUCCION DE CO2 A COMBUSTIBLES Y PRODUCTOS QUIMICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Gaudillere, CC.; García-Fayos, J.; Plaza-Belda, J.; Serra Alfaro, JM. (2019). Ice-Templating for the Elaboration of Oxygen Permeation Asymmetric Tubular Membrane with Radial Oriented Porosity. Ceramics. 2(2):246-259. https://doi.org/10.3390/ceramics2020020 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ceramics2020020 es_ES
dc.description.upvformatpinicio 246 es_ES
dc.description.upvformatpfin 259 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2571-6131 es_ES
dc.relation.pasarela S\389205 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Hashim, S. S., Mohamed, A. R., & Bhatia, S. (2011). Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation. Renewable and Sustainable Energy Reviews, 15(2), 1284-1293. doi:10.1016/j.rser.2010.10.002 es_ES
dc.description.references Rajesh, S., Pereira, J. R. S., Figueiredo, F. M. L., & Marques, F. M. B. (2014). Performance of Carbonate - LaCoO3 and La0.8Sr0.2Co0.2Fe0.8O3-δ Composite Cathodes under Carbon Dioxide. Electrochimica Acta, 125, 435-442. doi:10.1016/j.electacta.2014.01.157 es_ES
dc.description.references Serra, J. M., Garcia-Fayos, J., Baumann, S., Schulze-Küppers, F., & Meulenberg, W. A. (2013). Oxygen permeation through tape-cast asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3−δ membranes. Journal of Membrane Science, 447, 297-305. doi:10.1016/j.memsci.2013.07.030 es_ES
dc.description.references Gaudillere, C., Garcia-Fayos, J., & Serra, J. M. (2014). Enhancing oxygen permeation through hierarchically-structured perovskite membranes elaborated by freeze-casting. Journal of Materials Chemistry A, 2(11), 3828. doi:10.1039/c3ta14069e es_ES
dc.description.references Deville, S. (2008). Freeze-Casting of Porous Ceramics: A Review of Current Achievements and Issues. Advanced Engineering Materials, 10(3), 155-169. doi:10.1002/adem.200700270 es_ES
dc.description.references Gaudillere, C., Garcia-Fayos, J., Balaguer, M., & Serra, J. M. (2014). Enhanced Oxygen Separation through Robust Freeze-Cast Bilayered Dual-Phase Membranes. ChemSusChem, 7(9), 2554-2561. doi:10.1002/cssc.201402324 es_ES
dc.description.references Hong, L., & Chua, W. (2002). Fabrication of a dense La0.2Sr0.8CoO3−δ/CoO composite membrane by utilizing the electroless cobalt plating technique. Journal of Membrane Science, 198(1), 95-108. doi:10.1016/s0376-7388(01)00651-2 es_ES
dc.description.references Middleton, H., Diethelm, S., Ihringer, R., Larrain, D., Sfeir, J., & Van Herle, J. (2004). Co-casting and co-sintering of porous MgO support plates with thin dense perovskite layers of LaSrFeCoO3. Journal of the European Ceramic Society, 24(6), 1083-1086. doi:10.1016/s0955-2219(03)00554-5 es_ES
dc.description.references Lee, T. (1997). Oxygen permeation in dense SrCo0.8Fe0.2O3 − δ membranes: Surface exchange kinetics versus bulk diffusion. Solid State Ionics, 100(1-2), 77-85. doi:10.1016/s0167-2738(97)00257-9 es_ES
dc.description.references Balachandran, U., Dusek, J. T., Maiya, P. S., Ma, B., Mieville, R. L., Kleefisch, M. S., & Udovich, C. A. (1997). Ceramic membrane reactor for converting methane to syngas. Catalysis Today, 36(3), 265-272. doi:10.1016/s0920-5861(96)00229-5 es_ES
dc.description.references Balachandran, U., Dusek, J. T., Mieville, R. L., Poeppel, R. B., Kleefisch, M. S., Pei, S., … Bose, A. C. (1995). Dense ceramic membranes for partial oxidation of methane to syngas. Applied Catalysis A: General, 133(1), 19-29. doi:10.1016/0926-860x(95)00159-x es_ES
dc.description.references Li, S., Jin, W., Huang, P., Xu, N., Shi, J., & Lin, Y. . (2000). Tubular lanthanum cobaltite perovskite type membrane for oxygen permeation. Journal of Membrane Science, 166(1), 51-61. doi:10.1016/s0376-7388(99)00244-6 es_ES
dc.description.references Liu, Z., Zhang, G., Dong, X., Jiang, W., Jin, W., & Xu, N. (2012). Fabrication of asymmetric tubular mixed-conducting dense membranes by a combined spin-spraying and co-sintering process. Journal of Membrane Science, 415-416, 313-319. doi:10.1016/j.memsci.2012.05.011 es_ES
dc.description.references ITO, W., NAGAI, T., & SAKON, T. (2007). Oxygen separation from compressed air using a mixed conducting perovskite-type oxide membrane. Solid State Ionics, 178(11-12), 809-816. doi:10.1016/j.ssi.2007.02.031 es_ES
dc.description.references Zhu, X., Sun, S., Cong, Y., & Yang, W. (2009). Operation of perovskite membrane under vacuum and elevated pressures for high-purity oxygen production. Journal of Membrane Science, 345(1-2), 47-52. doi:10.1016/j.memsci.2009.08.020 es_ES
dc.description.references Moon, J.-W., Hwang, H.-J., Awano, M., & Maeda, K. (2003). Preparation of NiO–YSZ tubular support with radially aligned pore channels. Materials Letters, 57(8), 1428-1434. doi:10.1016/s0167-577x(02)01002-9 es_ES
dc.description.references Moon, Y.-W., Shin, K.-H., Koh, Y.-H., Yook, S.-W., Han, C.-M., & Kim, H.-E. (2012). Novel Ceramic/Camphene-Based Co-Extrusion for Highly Aligned Porous Alumina Ceramic Tubes. Journal of the American Ceramic Society, 95(6), 1803-1806. doi:10.1111/j.1551-2916.2012.05210.x es_ES
dc.description.references Liu, R., Yuan, J., & Wang, C. (2013). A novel way to fabricate tubular porous mullite membrane supports by TBA-based freezing casting method. Journal of the European Ceramic Society, 33(15-16), 3249-3256. doi:10.1016/j.jeurceramsoc.2013.06.005 es_ES
dc.description.references Seuba, J., Leloup, J., Richaud, S., Deville, S., Guizard, C., & Stevenson, A. J. (2017). Fabrication of ice-templated tubes by rotational freezing: Microstructure, strength, and permeability. Journal of the European Ceramic Society, 37(6), 2423-2429. doi:10.1016/j.jeurceramsoc.2017.01.014 es_ES
dc.description.references Knibbe, R., Hjelm, J., Menon, M., Pryds, N., Søgaard, M., Wang, H. J., & Neufeld, K. (2010). Cathode-Electrolyte Interfaces with CGO Barrier Layers in SOFC. Journal of the American Ceramic Society, 93(9), 2877-2883. doi:10.1111/j.1551-2916.2010.03763.x es_ES
dc.description.references Qiu, L. (2003). Ln1−xSrxCo1−yFeyO3−δ (Ln=Pr, Nd, Gd; x=0.2, 0.3) for the electrodes of solid oxide fuel cells. Solid State Ionics, 158(1-2), 55-65. doi:10.1016/s0167-2738(02)00757-9 es_ES
dc.description.references ZHOU, X. (2004). Electrical conductivity and stability of Gd-doped ceria/Y-doped zirconia ceramics and thin films. Solid State Ionics, 175(1-4), 19-22. doi:10.1016/j.ssi.2004.09.040 es_ES
dc.description.references Mori, M. (2003). Evaluation of Ni and Ti-doped Y2O3 stabilized ZrO2 cermet as an anode in high-temperature solid oxide fuel cells. Solid State Ionics, 160(1-2), 1-14. doi:10.1016/s0167-2738(03)00144-9 es_ES
dc.description.references Schulze-Küppers, F., Baumann, S., Tietz, F., Bouwmeester, H. J. M., & Meulenberg, W. A. (2014). Towards the fabrication of La0.98−xSrxCo0.2Fe0.8O3−δ perovskite-type oxygen transport membranes. Journal of the European Ceramic Society, 34(15), 3741-3748. doi:10.1016/j.jeurceramsoc.2014.06.012 es_ES
dc.description.references PEREZCOLL, D., NUNEZ, P., ABRANTES, J., FAGG, D., KHARTON, V., & FRADE, J. (2005). Effects of firing conditions and addition of Co on bulk and grain boundary properties of CGO. Solid State Ionics, 176(37-38), 2799-2805. doi:10.1016/j.ssi.2005.06.023 es_ES
dc.description.references Baque, L. C., Padmasree, K., Ceniceros Reyes, M. A., Troiani, H., Arce, M. D., Serquis, A., & Soldati, A. (2016). Effect of Cobalt-Doped Electrolyte on the Electrochemical Performance of LSCFO/CGO Interfaces. ECS Transactions, 72(7), 117-121. doi:10.1149/07207.0117ecst es_ES
dc.description.references Balaguer, M., Solís, C., Roitsch, S., & Serra, J. M. (2014). Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2−δ+ Co 2 mol%. Dalton Trans., 43(11), 4305-4312. doi:10.1039/c3dt52167b es_ES
dc.description.references Gaudillere, C., Garcia-Fayos, J., & Serra, J. M. (2014). Oxygen Permeation Improvement under CO2-Rich Environments through Catalytic Activation of Hierarchically Structured Perovskite Membranes. ChemPlusChem, n/a-n/a. doi:10.1002/cplu.201402142 es_ES
dc.description.references Garcia-Fayos, J., Søgaard, M., Kaiser, A., & Serra, J. M. (2019). Oxygen permeation studies in surface Pd-activated asymmetric Ce0.9Gd0.1O1.95 membranes for application in CO2 and CH4 environments. Separation and Purification Technology, 216, 58-64. doi:10.1016/j.seppur.2019.01.068 es_ES
dc.description.references Bouwmeester, H., & Burggraaf, A. (1997). Dense Ceramic Membranes for Oxygen Separation. Handbook of Solid State Electrochemistry. doi:10.1201/9781420049305.ch14 es_ES
dc.description.references Escribano, J. A., García-Fayos, J., & Serra, J. M. (2017). Shaping of 3YSZ porous substrates for oxygen separation membranes. Journal of the European Ceramic Society, 37(16), 5223-5231. doi:10.1016/j.jeurceramsoc.2017.05.032 es_ES
dc.description.references Lobera, M. P., Balaguer, M., García-Fayos, J., & Serra, J. M. (2017). Catalytic Oxide-Ion Conducting Materials for Surface Activation of Ba0.5Sr0.5Co0.8Fe0.2O3-δMembranes. ChemistrySelect, 2(10), 2949-2955. doi:10.1002/slct.201700530 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem