Mostrar el registro sencillo del ítem
dc.contributor.author | Gaudillere, Cyril Christian | es_ES |
dc.contributor.author | García-Fayos, Julio | es_ES |
dc.contributor.author | Plaza-Belda, Jorge | es_ES |
dc.contributor.author | Serra Alfaro, José Manuel | es_ES |
dc.date.accessioned | 2020-11-17T04:32:01Z | |
dc.date.available | 2020-11-17T04:32:01Z | |
dc.date.issued | 2019-04-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/155116 | |
dc.description.abstract | [EN] An original asymmetric tubular membrane for oxygen production applications was manufactured in a two-step process. A 3 mol% Y2O3 stabilized ZrO2 (3YSZ) porous tubular support was manufactured by the freeze-casting technique, offering a hierarchical and radial-oriented porosity of about 15 µm in width, separated by fully densified walls of about 2 µm thick, suggesting low pressure drop and boosted gas transport. The external surface of the support was successively dip-coated to get a Ce0.8Gd0.2O2¿¿ ¿ 5mol%Co (CGO-Co) interlayer of 80 µm in thickness and an outer dense layer of La0.6Sr0.4Co0.2Fe0.8O3¿¿ (LSCF) with a thickness of 30 µm. The whole tubular membrane presents both uniform geometric characteristics and microstructure all along its length. Chemical reactivity between each layer was studied by coupling X-Ray Diffraction (XRD) analysis and Energy Dispersive X-Ray spectroscopy (EDX) mapping at each step of the manufacturing process. Cation interdiffusion between different phases was discarded, confirming the compatibility of this tri-layer asymmetric ceramic membrane for oxygen production purposes. For the first time, a freeze-cast tubular membrane has been evaluated for oxygen permeation, exhibiting a value of 0.31 mL·min¿1·cm¿2 at 1000 °C under air and argon as feed and sweep gases, respectively. Finally, under the same conditions and increasing the oxygen partial pressure to get pure oxygen as feed, the oxygen permeation reached 1.07 mL·min¿1·cm¿2. | es_ES |
dc.description.sponsorship | Funding from the Spanish Government (ENE2014-57651 and SEV-2016-0683 grants) is kindly acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Ceramics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Ice templating | es_ES |
dc.subject | Freeze-casting | es_ES |
dc.subject | Tubular asymmetric membrane | es_ES |
dc.subject | Oxygen permeation | es_ES |
dc.subject | Perovskite material | es_ES |
dc.title | Ice-Templating for the Elaboration of Oxygen Permeation Asymmetric Tubular Membrane with Radial Oriented Porosity | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ceramics2020020 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2014-57651-R/ES/ALMACENAMIENTO DE ENERGIA VIA REDUCCION DE CO2 A COMBUSTIBLES Y PRODUCTOS QUIMICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Gaudillere, CC.; García-Fayos, J.; Plaza-Belda, J.; Serra Alfaro, JM. (2019). Ice-Templating for the Elaboration of Oxygen Permeation Asymmetric Tubular Membrane with Radial Oriented Porosity. Ceramics. 2(2):246-259. https://doi.org/10.3390/ceramics2020020 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ceramics2020020 | es_ES |
dc.description.upvformatpinicio | 246 | es_ES |
dc.description.upvformatpfin | 259 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 2571-6131 | es_ES |
dc.relation.pasarela | S\389205 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Hashim, S. S., Mohamed, A. R., & Bhatia, S. (2011). Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation. Renewable and Sustainable Energy Reviews, 15(2), 1284-1293. doi:10.1016/j.rser.2010.10.002 | es_ES |
dc.description.references | Rajesh, S., Pereira, J. R. S., Figueiredo, F. M. L., & Marques, F. M. B. (2014). Performance of Carbonate - LaCoO3 and La0.8Sr0.2Co0.2Fe0.8O3-δ Composite Cathodes under Carbon Dioxide. Electrochimica Acta, 125, 435-442. doi:10.1016/j.electacta.2014.01.157 | es_ES |
dc.description.references | Serra, J. M., Garcia-Fayos, J., Baumann, S., Schulze-Küppers, F., & Meulenberg, W. A. (2013). Oxygen permeation through tape-cast asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3−δ membranes. Journal of Membrane Science, 447, 297-305. doi:10.1016/j.memsci.2013.07.030 | es_ES |
dc.description.references | Gaudillere, C., Garcia-Fayos, J., & Serra, J. M. (2014). Enhancing oxygen permeation through hierarchically-structured perovskite membranes elaborated by freeze-casting. Journal of Materials Chemistry A, 2(11), 3828. doi:10.1039/c3ta14069e | es_ES |
dc.description.references | Deville, S. (2008). Freeze-Casting of Porous Ceramics: A Review of Current Achievements and Issues. Advanced Engineering Materials, 10(3), 155-169. doi:10.1002/adem.200700270 | es_ES |
dc.description.references | Gaudillere, C., Garcia-Fayos, J., Balaguer, M., & Serra, J. M. (2014). Enhanced Oxygen Separation through Robust Freeze-Cast Bilayered Dual-Phase Membranes. ChemSusChem, 7(9), 2554-2561. doi:10.1002/cssc.201402324 | es_ES |
dc.description.references | Hong, L., & Chua, W. (2002). Fabrication of a dense La0.2Sr0.8CoO3−δ/CoO composite membrane by utilizing the electroless cobalt plating technique. Journal of Membrane Science, 198(1), 95-108. doi:10.1016/s0376-7388(01)00651-2 | es_ES |
dc.description.references | Middleton, H., Diethelm, S., Ihringer, R., Larrain, D., Sfeir, J., & Van Herle, J. (2004). Co-casting and co-sintering of porous MgO support plates with thin dense perovskite layers of LaSrFeCoO3. Journal of the European Ceramic Society, 24(6), 1083-1086. doi:10.1016/s0955-2219(03)00554-5 | es_ES |
dc.description.references | Lee, T. (1997). Oxygen permeation in dense SrCo0.8Fe0.2O3 − δ membranes: Surface exchange kinetics versus bulk diffusion. Solid State Ionics, 100(1-2), 77-85. doi:10.1016/s0167-2738(97)00257-9 | es_ES |
dc.description.references | Balachandran, U., Dusek, J. T., Maiya, P. S., Ma, B., Mieville, R. L., Kleefisch, M. S., & Udovich, C. A. (1997). Ceramic membrane reactor for converting methane to syngas. Catalysis Today, 36(3), 265-272. doi:10.1016/s0920-5861(96)00229-5 | es_ES |
dc.description.references | Balachandran, U., Dusek, J. T., Mieville, R. L., Poeppel, R. B., Kleefisch, M. S., Pei, S., … Bose, A. C. (1995). Dense ceramic membranes for partial oxidation of methane to syngas. Applied Catalysis A: General, 133(1), 19-29. doi:10.1016/0926-860x(95)00159-x | es_ES |
dc.description.references | Li, S., Jin, W., Huang, P., Xu, N., Shi, J., & Lin, Y. . (2000). Tubular lanthanum cobaltite perovskite type membrane for oxygen permeation. Journal of Membrane Science, 166(1), 51-61. doi:10.1016/s0376-7388(99)00244-6 | es_ES |
dc.description.references | Liu, Z., Zhang, G., Dong, X., Jiang, W., Jin, W., & Xu, N. (2012). Fabrication of asymmetric tubular mixed-conducting dense membranes by a combined spin-spraying and co-sintering process. Journal of Membrane Science, 415-416, 313-319. doi:10.1016/j.memsci.2012.05.011 | es_ES |
dc.description.references | ITO, W., NAGAI, T., & SAKON, T. (2007). Oxygen separation from compressed air using a mixed conducting perovskite-type oxide membrane. Solid State Ionics, 178(11-12), 809-816. doi:10.1016/j.ssi.2007.02.031 | es_ES |
dc.description.references | Zhu, X., Sun, S., Cong, Y., & Yang, W. (2009). Operation of perovskite membrane under vacuum and elevated pressures for high-purity oxygen production. Journal of Membrane Science, 345(1-2), 47-52. doi:10.1016/j.memsci.2009.08.020 | es_ES |
dc.description.references | Moon, J.-W., Hwang, H.-J., Awano, M., & Maeda, K. (2003). Preparation of NiO–YSZ tubular support with radially aligned pore channels. Materials Letters, 57(8), 1428-1434. doi:10.1016/s0167-577x(02)01002-9 | es_ES |
dc.description.references | Moon, Y.-W., Shin, K.-H., Koh, Y.-H., Yook, S.-W., Han, C.-M., & Kim, H.-E. (2012). Novel Ceramic/Camphene-Based Co-Extrusion for Highly Aligned Porous Alumina Ceramic Tubes. Journal of the American Ceramic Society, 95(6), 1803-1806. doi:10.1111/j.1551-2916.2012.05210.x | es_ES |
dc.description.references | Liu, R., Yuan, J., & Wang, C. (2013). A novel way to fabricate tubular porous mullite membrane supports by TBA-based freezing casting method. Journal of the European Ceramic Society, 33(15-16), 3249-3256. doi:10.1016/j.jeurceramsoc.2013.06.005 | es_ES |
dc.description.references | Seuba, J., Leloup, J., Richaud, S., Deville, S., Guizard, C., & Stevenson, A. J. (2017). Fabrication of ice-templated tubes by rotational freezing: Microstructure, strength, and permeability. Journal of the European Ceramic Society, 37(6), 2423-2429. doi:10.1016/j.jeurceramsoc.2017.01.014 | es_ES |
dc.description.references | Knibbe, R., Hjelm, J., Menon, M., Pryds, N., Søgaard, M., Wang, H. J., & Neufeld, K. (2010). Cathode-Electrolyte Interfaces with CGO Barrier Layers in SOFC. Journal of the American Ceramic Society, 93(9), 2877-2883. doi:10.1111/j.1551-2916.2010.03763.x | es_ES |
dc.description.references | Qiu, L. (2003). Ln1−xSrxCo1−yFeyO3−δ (Ln=Pr, Nd, Gd; x=0.2, 0.3) for the electrodes of solid oxide fuel cells. Solid State Ionics, 158(1-2), 55-65. doi:10.1016/s0167-2738(02)00757-9 | es_ES |
dc.description.references | ZHOU, X. (2004). Electrical conductivity and stability of Gd-doped ceria/Y-doped zirconia ceramics and thin films. Solid State Ionics, 175(1-4), 19-22. doi:10.1016/j.ssi.2004.09.040 | es_ES |
dc.description.references | Mori, M. (2003). Evaluation of Ni and Ti-doped Y2O3 stabilized ZrO2 cermet as an anode in high-temperature solid oxide fuel cells. Solid State Ionics, 160(1-2), 1-14. doi:10.1016/s0167-2738(03)00144-9 | es_ES |
dc.description.references | Schulze-Küppers, F., Baumann, S., Tietz, F., Bouwmeester, H. J. M., & Meulenberg, W. A. (2014). Towards the fabrication of La0.98−xSrxCo0.2Fe0.8O3−δ perovskite-type oxygen transport membranes. Journal of the European Ceramic Society, 34(15), 3741-3748. doi:10.1016/j.jeurceramsoc.2014.06.012 | es_ES |
dc.description.references | PEREZCOLL, D., NUNEZ, P., ABRANTES, J., FAGG, D., KHARTON, V., & FRADE, J. (2005). Effects of firing conditions and addition of Co on bulk and grain boundary properties of CGO. Solid State Ionics, 176(37-38), 2799-2805. doi:10.1016/j.ssi.2005.06.023 | es_ES |
dc.description.references | Baque, L. C., Padmasree, K., Ceniceros Reyes, M. A., Troiani, H., Arce, M. D., Serquis, A., & Soldati, A. (2016). Effect of Cobalt-Doped Electrolyte on the Electrochemical Performance of LSCFO/CGO Interfaces. ECS Transactions, 72(7), 117-121. doi:10.1149/07207.0117ecst | es_ES |
dc.description.references | Balaguer, M., Solís, C., Roitsch, S., & Serra, J. M. (2014). Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2−δ+ Co 2 mol%. Dalton Trans., 43(11), 4305-4312. doi:10.1039/c3dt52167b | es_ES |
dc.description.references | Gaudillere, C., Garcia-Fayos, J., & Serra, J. M. (2014). Oxygen Permeation Improvement under CO2-Rich Environments through Catalytic Activation of Hierarchically Structured Perovskite Membranes. ChemPlusChem, n/a-n/a. doi:10.1002/cplu.201402142 | es_ES |
dc.description.references | Garcia-Fayos, J., Søgaard, M., Kaiser, A., & Serra, J. M. (2019). Oxygen permeation studies in surface Pd-activated asymmetric Ce0.9Gd0.1O1.95 membranes for application in CO2 and CH4 environments. Separation and Purification Technology, 216, 58-64. doi:10.1016/j.seppur.2019.01.068 | es_ES |
dc.description.references | Bouwmeester, H., & Burggraaf, A. (1997). Dense Ceramic Membranes for Oxygen Separation. Handbook of Solid State Electrochemistry. doi:10.1201/9781420049305.ch14 | es_ES |
dc.description.references | Escribano, J. A., García-Fayos, J., & Serra, J. M. (2017). Shaping of 3YSZ porous substrates for oxygen separation membranes. Journal of the European Ceramic Society, 37(16), 5223-5231. doi:10.1016/j.jeurceramsoc.2017.05.032 | es_ES |
dc.description.references | Lobera, M. P., Balaguer, M., García-Fayos, J., & Serra, J. M. (2017). Catalytic Oxide-Ion Conducting Materials for Surface Activation of Ba0.5Sr0.5Co0.8Fe0.2O3-δMembranes. ChemistrySelect, 2(10), 2949-2955. doi:10.1002/slct.201700530 | es_ES |