- -

Well-posedness for degenerate third order equations with delay and applications to inverse problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Well-posedness for degenerate third order equations with delay and applications to inverse problems

Mostrar el registro completo del ítem

Conejero, JA.; Lizama, C.; Murillo-Arcila, M.; Seoane Sepúlveda, JB. (2019). Well-posedness for degenerate third order equations with delay and applications to inverse problems. Israel Journal of Mathematics. 229(1):219-254. https://doi.org/10.1007/s11856-018-1796-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/155123

Ficheros en el ítem

Metadatos del ítem

Título: Well-posedness for degenerate third order equations with delay and applications to inverse problems
Autor: Conejero, J. Alberto Lizama, C. Murillo-Arcila, Marina SEOANE SEPÚLVEDA, JUAN BENIGNO
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] In this paper, we study well-posedness for the following third-order in time equation with delay <disp-formula idoperators defined on a Banach space X with domains D(A) and D(B) such that t)is the state function taking ...[+]
Palabras clave: Valued Fourier multipliers , Integrodifferential Equations , Periodic-Solutions , Maximal regularity , Infinite delay , Besov-Spaces , Differential-Equations
Derechos de uso: Reserva de todos los derechos
Fuente:
Israel Journal of Mathematics. (issn: 0021-2172 )
DOI: 10.1007/s11856-018-1796-8
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11856-018-1796-8
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/
info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F030/
info:eu-repo/grantAgreement/MINECO//MTM2015-65825-P/ES/ANALISIS FUNCIONAL NO LINEAL Y GEOMETRICO/
Agradecimientos:
The first, second and third authors have been supported by MEC, grant MTM2016-75963-P. The second author has been supported by AICO/2016/30. The fourth author has been supported by MEC, grant MTM2015-65825-P.
Tipo: Artículo

References

K. Abbaoui and Y. Cherruault, New ideas for solving identification and optimal control problems related to biomedical systems, International Journal of Biomedical Computing 36 (1994), 181–186.

M. Al Horani and A. Favini, Perturbation method for first- and complete second-order differential equations, Journal of Optimization Theory and Applications 166 (2015), 949–967.

H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Mathematische Nachrichten 186 (1997), 5–56. [+]
K. Abbaoui and Y. Cherruault, New ideas for solving identification and optimal control problems related to biomedical systems, International Journal of Biomedical Computing 36 (1994), 181–186.

M. Al Horani and A. Favini, Perturbation method for first- and complete second-order differential equations, Journal of Optimization Theory and Applications 166 (2015), 949–967.

H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Mathematische Nachrichten 186 (1997), 5–56.

U. A. Anufrieva, A degenerate Cauchy problem for a second-order equation. A wellposedness criterion, Differentsial’nye Uravneniya 34 (1998), 1131–1133; English translation: Differential Equations 34 (1999), 1135–1137.

W. Arendt and S. Bu, The operator-valued Marcinkiewicz multiplier theorem and maximal regularity, Mathematische Zeitschrift 240 (2002), 311–343.

W. Arendt and S. Bu, Operator-valued Fourier multipliers on periodic Besov spaces and applications, Proceedings of the Edinburgh Mathematical Society 47 (2004), 15–33.

W. Arendt, C. Batty and S. Bu, Fourier multipliers for Holder continuous functions and maximal regularity, Studia Mathematica 160 (2004), 23–51.

V. Barbu and A. Favini, Periodic problems for degenerate differential equations, Rendiconti dell’Istituto di Matematica dell’Università di Trieste 28 (1996), 29–57.

A. Bátkai and S. Piazzera, Semigroups for Delay Equations, Research Notes in Mathematics, Vol. 10, A K Peters, Wellesley, MA, 2005.

S. Bu, Well-posedness of second order degenerate differential equations in vector-valued function spaces, Studia Mathematica 214 (2013), 1–16.

S. Bu and G. Cai, Periodic solutions of third-order degenerate differential equations in vector-valued functional spaces, Israel Journal of Mathematics 212 (2016), 163–188.

S. Bu and G. Cai, Well-posedness of second-order degenerate differential equations with finite delay in vector-valued function spaces, Pacific Journal of Mathematics 288 (2017), 27–46.

S. Bu and Y. Fang, Periodic solutions of delay equations in Besov spaces and Triebel–Lizorkin spaces, Taiwanese Journal of Mathematics 13 (2009), 1063–1076.

S. Bu and J. Kim, Operator-valued Fourier multipliers on periodic Triebel spaces, Acta Mathematica Sinica 21 (2005), 1049–1056.

G. Cai and S. Bu, Well-posedness of second order degenerate integro-differential equations with infinite delay in vector-valued function spaces, Mathematische Nachrichten 289 (2016), 436–451.

R. Chill and S. Srivastava, Lp-maximal regularity for second order Cauchy problems, Mathematische Zeitschrift 251 (2005), 751–781.

R. Denk, M. Hieber and J. Prüss, R-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Memoirs of the American Mathematical Society 166 (2003).

O. Diekmann, S. A. van Giles, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations, Applied Mathematical Sciences, Vol. 110, Springer, New York, 1995.

K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Vol. 194, Springer, New York, 2000.

M. Fabrizio, A. Favini and G. Marinoschi, An optimal control problem for a singular system of solid liquid phase-transition, Numerical Functional Analysis and Optimization 31 (2010), 989–1022.

A. Favini and G. Marinoschi, Periodic behavior for a degenerate fast diffusion equation, Journal of Mathematical Analysis and Applications 351 (2009), 509–521.

A. Favini and G. Marinoschi, Identification of the time derivative coefficients in a fast diffusion degenerate equation, Journal of Optimization Theory and Applications 145 (2010), 249–269.

A. Favini and A. Yagi, Degenerate differential equations in Banach spaces, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 215, Marcel Dekker, New York, 1999.

X. L. Fu and M. Li, Maximal regularity of second-order evolution equations with infinite delay in Banach spaces, Studia Mathematica 224 (2014), 199–219.

G. C. Gorain, Boundary stabilization of nonlinear vibrations of a flexible structure in a bounded domain in Rn, Journal of Mathematical Analysis and Applications 319 (2006), 635–650.

P. Grisvard, Équations différentielles abstraites, Annales Scientifiques de l’école Normale Superieure 2 (1969), 311–395.

J. K. Hale and W. Huang, Global geometry of the stable regions for two delay differential equations, Journal of Mathematical Analysis and Applications 178 (1993), 344–362.

Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, Vol. 1473, Springer, Berlin, 1991.

B. Kaltenbacher, I. Lasiecka and M. Pospieszalska, Well-posedness and exponential decay of the energy in the nonlinear Moore-Gibson-Thomson equation arising in high intensity ultrasound, Mathematical Models & Methods in Applied Sciences 22 (2012), 1250035.

V. Keyantuo and C. Lizama, Fourier multipliers and integro-differential equations in Banach spaces, Journal of the London Mathematical Society 69 (2004), 737–750.

V. Keyantuo and C. Lizama, Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces, Studia Mathematica 168 (2005), 25–50.

V. Keyantuo, C. Lizama and V. Poblete, Periodic solutions of integro-differential euations in vector-valued function spaces, Journal of Differential Equations 246 (2009), 1007–1037.

C. Lizama, Fourier multipliers and periodic solutions of delay equations in Banach spaces, Journal of Mathematical Analysis and Applications 324 (2006), 921–933.

C. Lizama and V. Poblete, Maximal regularity of delay equations in Banach spaces, Studia Mathematica 175 (2006), 91–102.

C. Lizama and R. Ponce, Periodic solutions of degenerate differential equations in vector valued function spaces, Studia Mathematica 202 (2011), 49–63.

C. Lizama and R. Ponce, Maximal regularity for degenerate differential equations with infinite delay in periodic vector-valued function spaces, Proceedings of the Edinburgh Mathematical Society 56 (2013), 853–871.

R. Marchand, T. Mcdevitt and R. Triggiani, An abstract semigroup approach to the third-order Moore–Gibson–Thompson partial differential equation arising in highintensity ultrasound: structural decomposition, spectral analysis, exponential stability, Mathematical Methods in the Applied Sciences 35 (2012), 1896–1929.

V. Poblete, Solutions of second-order integro-differential equations on periodic Besov spaces, Proceedings of the Edinburgh Mathematical Society 50 (2007), 477–492.

V. Poblete and J. C. Pozo, Periodic solutions of an abstract third-order differential equation, Studia Mathematica 215 (2013), 195–219.

J. Prüss, Evolutionary Integral Equations and Applications, Monographs in Mathematics, Vol. 87, Birkhäuser, Heidelberg, 1993.

G. A. Sviridyuk and V. E. Fedorov, Linear Sobolev type Equations and Degenerate Semigroups of Operators, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2003.

L. Weis, Operator-valued Fourier multiplier theorems and maximal Lp-regularity, Mathematische Annalen 319 (2001), 735–758.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem