dc.contributor.author |
Carrillo, Adela I.
|
es_ES |
dc.contributor.author |
Elhage, Ayda
|
es_ES |
dc.contributor.author |
Marín García, Mª Luisa
|
es_ES |
dc.contributor.author |
Lanterna, Anabel E.
|
es_ES |
dc.date.accessioned |
2020-11-18T04:31:46Z |
|
dc.date.available |
2020-11-18T04:31:46Z |
|
dc.date.issued |
2019-11-22 |
es_ES |
dc.identifier.issn |
0947-6539 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/155244 |
|
dc.description |
This is the peer reviewed version of the following article: Chem. Eur. J. 2019, 25, 14928 14934, which has been published in final form at https://doi.org/10.1002/chem.201903539. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving |
es_ES |
dc.description.abstract |
[EN] A mechanistic study is herein presented for the use of heterogeneous photocatalysts based on perylene moieties. First, the successful immobilization of perylene diimides (PDI) on silica matrices is demonstrated, including their full characterization by means of electronic microscopy, surface area measurements, powder XRD, thermogravimetric analysis, and FTIR, Si-29 and C-13 solid-state NMR, fluorescence, and diffuse reflectance spectroscopies. Then, the photoredox activity of the material was tested by using two model reactions, alkene oxidation and 4-nitrobenzylbromide reduction, and mechanistic studies were performed. The mechanistic insights into their photoredox activity show they have promising dual photocatalytic activity for both organic oxidations and reductions. |
es_ES |
dc.description.sponsorship |
This work was supported by the Natural Sciences and Engineering Research Council of Canada and the Canada Foundation for Innovation. The authors are grateful to Prof. J.C. Scaiano for his generous support. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
John Wiley & Sons |
es_ES |
dc.relation.ispartof |
Chemistry - A European Journal |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Heterogeneous catalysis |
es_ES |
dc.subject |
MCM-41 |
es_ES |
dc.subject |
Photoredox catalysis |
es_ES |
dc.subject |
Reaction mechanisms |
es_ES |
dc.subject |
SBA-15 |
es_ES |
dc.subject.classification |
QUIMICA ORGANICA |
es_ES |
dc.title |
Perylene-Grafted Silicas: Mechanistic Study and Applications in Heterogeneous Photoredox Catalysis |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1002/chem.201903539 |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Química - Departament de Química |
es_ES |
dc.description.bibliographicCitation |
Carrillo, AI.; Elhage, A.; Marín García, ML.; Lanterna, AE. (2019). Perylene-Grafted Silicas: Mechanistic Study and Applications in Heterogeneous Photoredox Catalysis. Chemistry - A European Journal. 25(65):14928-14934. https://doi.org/10.1002/chem.201903539 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1002/chem.201903539 |
es_ES |
dc.description.upvformatpinicio |
14928 |
es_ES |
dc.description.upvformatpfin |
14934 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
25 |
es_ES |
dc.description.issue |
65 |
es_ES |
dc.identifier.pmid |
31532564 |
es_ES |
dc.relation.pasarela |
S\404249 |
es_ES |
dc.contributor.funder |
Canada Foundation for Innovation |
es_ES |
dc.contributor.funder |
Natural Sciences and Engineering Research Council of Canada |
es_ES |
dc.description.references |
Marzo, L., Pagire, S. K., Reiser, O., & König, B. (2018). Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis? Angewandte Chemie International Edition, 57(32), 10034-10072. doi:10.1002/anie.201709766 |
es_ES |
dc.description.references |
Marzo, L., Pagire, S. K., Reiser, O., & König, B. (2018). Photokatalyse mit sichtbarem Licht: Welche Bedeutung hat sie für die organische Synthese? Angewandte Chemie, 130(32), 10188-10228. doi:10.1002/ange.201709766 |
es_ES |
dc.description.references |
Miranda, M. A., & Marin, M. L. (2017). Photocatalytic functionalization for the synthesis of drugs and analogs. Current Opinion in Green and Sustainable Chemistry, 6, 139-149. doi:10.1016/j.cogsc.2017.05.001 |
es_ES |
dc.description.references |
Yoon, T. P. (2016). Photochemical Stereocontrol Using Tandem Photoredox–Chiral Lewis Acid Catalysis. Accounts of Chemical Research, 49(10), 2307-2315. doi:10.1021/acs.accounts.6b00280 |
es_ES |
dc.description.references |
Pitre, S. P., McTiernan, C. D., & Scaiano, J. C. (2016). Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives. Accounts of Chemical Research, 49(6), 1320-1330. doi:10.1021/acs.accounts.6b00012 |
es_ES |
dc.description.references |
Lang, X., Chen, X., & Zhao, J. (2014). Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev., 43(1), 473-486. doi:10.1039/c3cs60188a |
es_ES |
dc.description.references |
Schultz, D. M., & Yoon, T. P. (2014). Solar Synthesis: Prospects in Visible Light Photocatalysis. Science, 343(6174), 1239176-1239176. doi:10.1126/science.1239176 |
es_ES |
dc.description.references |
Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews, 113(7), 5322-5363. doi:10.1021/cr300503r |
es_ES |
dc.description.references |
Narayanam, J. M. R., & Stephenson, C. R. J. (2011). Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev., 40(1), 102-113. doi:10.1039/b913880n |
es_ES |
dc.description.references |
Sarina, S., Waclawik, E. R., & Zhu, H. (2013). Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chemistry, 15(7), 1814. doi:10.1039/c3gc40450a |
es_ES |
dc.description.references |
Qu, Y., & Duan, X. (2013). Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev., 42(7), 2568-2580. doi:10.1039/c2cs35355e |
es_ES |
dc.description.references |
Jiang, J.-X., Li, Y., Wu, X., Xiao, J., Adams, D. J., & Cooper, A. I. (2013). Conjugated Microporous Polymers with Rose Bengal Dye for Highly Efficient Heterogeneous Organo-Photocatalysis. Macromolecules, 46(22), 8779-8783. doi:10.1021/ma402104h |
es_ES |
dc.description.references |
Fox, M. A., & Dulay, M. T. (1993). Heterogeneous photocatalysis. Chemical Reviews, 93(1), 341-357. doi:10.1021/cr00017a016 |
es_ES |
dc.description.references |
Sun, H., Wang, L., Wang, Y., & Guo, X. (2018). Imide‐Functionalized Polymer Semiconductors. Chemistry – A European Journal, 25(1), 87-105. doi:10.1002/chem.201803605 |
es_ES |
dc.description.references |
Nowak-Król, A., Shoyama, K., Stolte, M., & Würthner, F. (2018). Naphthalene and perylene diimides – better alternatives to fullerenes for organic electronics? Chemical Communications, 54(98), 13763-13772. doi:10.1039/c8cc07640e |
es_ES |
dc.description.references |
Arzoumanian, E., Ronzani, F., Trivella, A., Oliveros, E., Sarakha, M., Richard, C., … Lacombe, S. (2013). Transparent Organosilica Photocatalysts Activated by Visible Light: Photophysical and Oxidative Properties at the Gas–Solid Interface. ACS Applied Materials & Interfaces, 6(1), 275-288. doi:10.1021/am404175y |
es_ES |
dc.description.references |
Mathew, S., & Imahori, H. (2011). Tunable, strongly-donating perylene photosensitizers for dye-sensitized solar cells. Journal of Materials Chemistry, 21(20), 7166. doi:10.1039/c1jm10993f |
es_ES |
dc.description.references |
Wu, Y., Zhen, Y., Ma, Y., Zheng, R., Wang, Z., & Fu, H. (2010). Exceptional Intersystem Crossing in Di(perylene bisimide)s: A Structural Platform toward Photosensitizers for Singlet Oxygen Generation. The Journal of Physical Chemistry Letters, 1(17), 2499-2502. doi:10.1021/jz1008328 |
es_ES |
dc.description.references |
Würthner, F. (2004). Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. Chem. Commun., (14), 1564-1579. doi:10.1039/b401630k |
es_ES |
dc.description.references |
Ferrere, S., & Gregg, B. A. (2002). New perylenes for dye sensitization of TiO2. New Journal of Chemistry, 26(9), 1155-1160. doi:10.1039/b203260k |
es_ES |
dc.description.references |
Céspedes-Guirao, F. J., B. Ropero, A., Font-Sanchis, E., Nadal, Á., Fernández-Lázaro, F., & Sastre-Santos, Á. (2011). A water-soluble perylene dye functionalised with a 17β-estradiol: a new fluorescent tool for steroid hormones. Chemical Communications, 47(29), 8307. doi:10.1039/c1cc10966a |
es_ES |
dc.description.references |
Céspedes-Guirao, F. J., Martín-Gomis, L., Ohkubo, K., Fukuzumi, S., Fernández-Lázaro, F., & Sastre-Santos, Á. (2011). Synthesis and Photophysics of Silicon Phthalocyanine-Perylenebisimide Triads Connected through Rigid and Flexible Bridges. Chemistry - A European Journal, 17(33), 9153-9163. doi:10.1002/chem.201100320 |
es_ES |
dc.description.references |
Bodapati, J. B., & Icil, H. (2008). Highly soluble perylene diimide and oligomeric diimide dyes combining perylene and hexa(ethylene glycol) units: Synthesis, characterization, optical and electrochemical properties. Dyes and Pigments, 79(3), 224-235. doi:10.1016/j.dyepig.2008.02.009 |
es_ES |
dc.description.references |
Zhang, F., Ma, Y., Chi, Y., Yu, H., Li, Y., Jiang, T., … Shi, J. (2018). Self-assembly, optical and electrical properties of perylene diimide dyes bearing unsymmetrical substituents at bay position. Scientific Reports, 8(1). doi:10.1038/s41598-018-26502-5 |
es_ES |
dc.description.references |
Taguchi, A., & Schüth, F. (2005). Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials, 77(1), 1-45. doi:10.1016/j.micromeso.2004.06.030 |
es_ES |
dc.description.references |
Trong On, D., Desplantier-Giscard, D., Danumah, C., & Kaliaguine, S. (2001). Perspectives in catalytic applications of mesostructured materials. Applied Catalysis A: General, 222(1-2), 299-357. doi:10.1016/s0926-860x(01)00842-0 |
es_ES |
dc.description.references |
Carrillo, A. I., García-Martínez, J., Llusar, R., Serrano, E., Sorribes, I., Vicent, C., & Alejandro Vidal-Moya, J. (2012). Incorporation of cubane-type Mo3S4 molybdenum cluster sulfides in the framework of mesoporous silica. Microporous and Mesoporous Materials, 151, 380-389. doi:10.1016/j.micromeso.2011.10.005 |
es_ES |
dc.description.references |
Garcia-Martinez, J., Linares, N., Sinibaldi, S., Coronado, E., & Ribera, A. (2009). Incorporation of Pd nanoparticles in mesostructured silica. Microporous and Mesoporous Materials, 117(1-2), 170-177. doi:10.1016/j.micromeso.2008.06.038 |
es_ES |
dc.description.references |
Sriramulu, D., Turaga, S. P., Bettiol, A. A., & Valiyaveettil, S. (2017). Molecular Organization Induced Anisotropic Properties of Perylene – Silica Hybrid Nanoparticles. Scientific Reports, 7(1). doi:10.1038/s41598-017-07892-4 |
es_ES |
dc.description.references |
Wahab, M. A., Hussain, H., & He, C. (2009). Photoactive Perylenediimide-Bridged Silsesquioxane Functionalized Periodic Mesoporous Organosilica Thin Films (PMO-SBA15): Synthesis, Self-Assembly, and Photoluminescent and Enhanced Mechanical Properties. Langmuir, 25(8), 4743-4750. doi:10.1021/la900042g |
es_ES |
dc.description.references |
Ronzani, F., Saint-Cricq, P., Arzoumanian, E., Pigot, T., Blanc, S., Oelgemöller, M., … Lacombe, S. (2013). Immobilized Organic Photosensitizers with Versatile Reactivity for Various Visible-Light Applications. Photochemistry and Photobiology, 90(2), 358-368. doi:10.1111/php.12166 |
es_ES |
dc.description.references |
Shang, J., Tang, H., Ji, H., Ma, W., Chen, C., & Zhao, J. (2017). Synthesis, characterization, and activity of a covalently anchored heterogeneous perylene diimide photocatalyst. Chinese Journal of Catalysis, 38(12), 2094-2101. doi:10.1016/s1872-2067(17)62960-7 |
es_ES |
dc.description.references |
Lanterna, A. E., Elhage, A., & Scaiano, J. C. (2015). Heterogeneous photocatalytic C–C coupling: mechanism of plasmon-mediated reductive dimerization of benzyl bromides by supported gold nanoparticles. Catalysis Science & Technology, 5(9), 4336-4340. doi:10.1039/c5cy00655d |
es_ES |
dc.description.references |
Marquez, D. T., Carrillo, A. I., & Scaiano, J. C. (2013). Plasmon Excitation of Supported Gold Nanoparticles Can Control Molecular Release from Supramolecular Systems. Langmuir, 29(33), 10521-10528. doi:10.1021/la4019794 |
es_ES |
dc.description.references |
Albiter, E., Alfaro, S., & Valenzuela, M. A. (2015). Photosensitized oxidation of 9,10-dimethylanthracene with singlet oxygen by using a safranin O/silica composite under visible light. Photochemical & Photobiological Sciences, 14(3), 597-602. doi:10.1039/c4pp00261j |
es_ES |
dc.description.references |
Prusakova, V., McCusker, C. E., & Castellano, F. N. (2012). Ligand-Localized Triplet-State Photophysics in a Platinum(II) Terpyridyl Perylenediimideacetylide. Inorganic Chemistry, 51(15), 8589-8598. doi:10.1021/ic301169t |
es_ES |
dc.description.references |
Simonutti, R., Comotti, A., Bracco, S., & Sozzani, P. (2001). Surfactant Organization in MCM-41 Mesoporous Materials As Studied by13C and29Si Solid-State NMR. Chemistry of Materials, 13(3), 771-777. doi:10.1021/cm001088i |
es_ES |
dc.description.references |
Cardelli, A., Ricci, L., Ruggeri, G., Borsacchi, S., & Geppi, M. (2011). Optical properties of a polyethylene dispersion with a luminescent silica prepared by surface grafting of a perylene derivative. European Polymer Journal, 47(8), 1589-1600. doi:10.1016/j.eurpolymj.2011.05.006 |
es_ES |
dc.description.references |
Prathapan, S., Yang, S. I., Seth, J., Miller, M. A., Bocian, D. F., Holten, D., & Lindsey, J. S. (2001). Synthesis and Excited-State Photodynamics of Perylene−Porphyrin Dyads. 1. Parallel Energy and Charge Transfer via a Diphenylethyne Linker. The Journal of Physical Chemistry B, 105(34), 8237-8248. doi:10.1021/jp010335i |
es_ES |
dc.description.references |
Ford, W. E., & Kamat, P. V. (1987). Photochemistry of 3,4,9,10-perylenetetracarboxylic dianhydride dyes. 3. Singlet and triplet excited-state properties of the bis(2,5-di-tert-butylphenyl)imide derivative. The Journal of Physical Chemistry, 91(25), 6373-6380. doi:10.1021/j100309a012 |
es_ES |
dc.description.references |
Ghirotti, M., Chiorboli, C., You, C.-C., Würthner, F., & Scandola, F. (2008). Photoinduced Energy and Electron-Transfer Processes in Porphyrin−Perylene Bisimide Symmetric Triads. The Journal of Physical Chemistry A, 112(15), 3376-3385. doi:10.1021/jp7109516 |
es_ES |
dc.description.references |
Olea, A. F., & Wilkinson, F. (1995). Singlet Oxygen Production from Excited Singlet and Triplet States of Anthracene Derivatives in Acetonitrile. The Journal of Physical Chemistry, 99(13), 4518-4524. doi:10.1021/j100013a022 |
es_ES |
dc.description.references |
Wilkinson, F., Helman, W. P., & Ross, A. B. (1993). Quantum Yields for the Photosensitized Formation of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. Journal of Physical and Chemical Reference Data, 22(1), 113-262. doi:10.1063/1.555934 |
es_ES |
dc.description.references |
Zhao, Y. Z., Li, K. X., Ding, S. Y., Zhu, M., Ren, H. P., Ma, Q., … Miao, Z. C. (2018). The Effect of Reduction Potential on the Generation
of the Perylene Diimide Radical Anions. Russian Journal of Physical Chemistry A, 92(7), 1261-1265. doi:10.1134/s003602441807035x |
es_ES |
dc.description.references |
Daw, P., Petakamsetty, R., Sarbajna, A., Laha, S., Ramapanicker, R., & Bera, J. K. (2014). A Highly Efficient Catalyst for Selective Oxidative Scission of Olefins to Aldehydes: Abnormal-NHC–Ru(II) Complex in Oxidation Chemistry. Journal of the American Chemical Society, 136(40), 13987-13990. doi:10.1021/ja5075294 |
es_ES |
dc.description.references |
Nyawade, E. A., Friedrich, H. B., Omondi, B., & Mpungose, P. (2015). Synthesis and Characterization of New (η5-Cyclopentadienyl)dicarbonylruthenium(II) Amine Complexes: Their Application as Homogeneous Catalysts in Styrene Oxidation. Organometallics, 34(20), 4922-4931. doi:10.1021/acs.organomet.5b00564 |
es_ES |
dc.description.references |
Muthumari, S., & Ramesh, R. (2018). Synthesis and Structure of Ru(II) Complexes of Thiosemicarbazone: Highly Selective Catalysts for Oxidative Scission of Olefins to Aldehydes. ChemistrySelect, 3(11), 3036-3041. doi:10.1002/slct.201800163 |
es_ES |