- -

Perylene-Grafted Silicas: Mechanistic Study and Applications in Heterogeneous Photoredox Catalysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Perylene-Grafted Silicas: Mechanistic Study and Applications in Heterogeneous Photoredox Catalysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carrillo, Adela I. es_ES
dc.contributor.author Elhage, Ayda es_ES
dc.contributor.author Marín García, Mª Luisa es_ES
dc.contributor.author Lanterna, Anabel E. es_ES
dc.date.accessioned 2020-11-18T04:31:46Z
dc.date.available 2020-11-18T04:31:46Z
dc.date.issued 2019-11-22 es_ES
dc.identifier.issn 0947-6539 es_ES
dc.identifier.uri http://hdl.handle.net/10251/155244
dc.description This is the peer reviewed version of the following article: Chem. Eur. J. 2019, 25, 14928 14934, which has been published in final form at https://doi.org/10.1002/chem.201903539. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving es_ES
dc.description.abstract [EN] A mechanistic study is herein presented for the use of heterogeneous photocatalysts based on perylene moieties. First, the successful immobilization of perylene diimides (PDI) on silica matrices is demonstrated, including their full characterization by means of electronic microscopy, surface area measurements, powder XRD, thermogravimetric analysis, and FTIR, Si-29 and C-13 solid-state NMR, fluorescence, and diffuse reflectance spectroscopies. Then, the photoredox activity of the material was tested by using two model reactions, alkene oxidation and 4-nitrobenzylbromide reduction, and mechanistic studies were performed. The mechanistic insights into their photoredox activity show they have promising dual photocatalytic activity for both organic oxidations and reductions. es_ES
dc.description.sponsorship This work was supported by the Natural Sciences and Engineering Research Council of Canada and the Canada Foundation for Innovation. The authors are grateful to Prof. J.C. Scaiano for his generous support. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Heterogeneous catalysis es_ES
dc.subject MCM-41 es_ES
dc.subject Photoredox catalysis es_ES
dc.subject Reaction mechanisms es_ES
dc.subject SBA-15 es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Perylene-Grafted Silicas: Mechanistic Study and Applications in Heterogeneous Photoredox Catalysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.201903539 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Carrillo, AI.; Elhage, A.; Marín García, ML.; Lanterna, AE. (2019). Perylene-Grafted Silicas: Mechanistic Study and Applications in Heterogeneous Photoredox Catalysis. Chemistry - A European Journal. 25(65):14928-14934. https://doi.org/10.1002/chem.201903539 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/chem.201903539 es_ES
dc.description.upvformatpinicio 14928 es_ES
dc.description.upvformatpfin 14934 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 25 es_ES
dc.description.issue 65 es_ES
dc.identifier.pmid 31532564 es_ES
dc.relation.pasarela S\404249 es_ES
dc.contributor.funder Canada Foundation for Innovation es_ES
dc.contributor.funder Natural Sciences and Engineering Research Council of Canada es_ES
dc.description.references Marzo, L., Pagire, S. K., Reiser, O., & König, B. (2018). Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis? Angewandte Chemie International Edition, 57(32), 10034-10072. doi:10.1002/anie.201709766 es_ES
dc.description.references Marzo, L., Pagire, S. K., Reiser, O., & König, B. (2018). Photokatalyse mit sichtbarem Licht: Welche Bedeutung hat sie für die organische Synthese? Angewandte Chemie, 130(32), 10188-10228. doi:10.1002/ange.201709766 es_ES
dc.description.references Miranda, M. A., & Marin, M. L. (2017). Photocatalytic functionalization for the synthesis of drugs and analogs. Current Opinion in Green and Sustainable Chemistry, 6, 139-149. doi:10.1016/j.cogsc.2017.05.001 es_ES
dc.description.references Yoon, T. P. (2016). Photochemical Stereocontrol Using Tandem Photoredox–Chiral Lewis Acid Catalysis. Accounts of Chemical Research, 49(10), 2307-2315. doi:10.1021/acs.accounts.6b00280 es_ES
dc.description.references Pitre, S. P., McTiernan, C. D., & Scaiano, J. C. (2016). Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives. Accounts of Chemical Research, 49(6), 1320-1330. doi:10.1021/acs.accounts.6b00012 es_ES
dc.description.references Lang, X., Chen, X., & Zhao, J. (2014). Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev., 43(1), 473-486. doi:10.1039/c3cs60188a es_ES
dc.description.references Schultz, D. M., & Yoon, T. P. (2014). Solar Synthesis: Prospects in Visible Light Photocatalysis. Science, 343(6174), 1239176-1239176. doi:10.1126/science.1239176 es_ES
dc.description.references Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews, 113(7), 5322-5363. doi:10.1021/cr300503r es_ES
dc.description.references Narayanam, J. M. R., & Stephenson, C. R. J. (2011). Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev., 40(1), 102-113. doi:10.1039/b913880n es_ES
dc.description.references Sarina, S., Waclawik, E. R., & Zhu, H. (2013). Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chemistry, 15(7), 1814. doi:10.1039/c3gc40450a es_ES
dc.description.references Qu, Y., & Duan, X. (2013). Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev., 42(7), 2568-2580. doi:10.1039/c2cs35355e es_ES
dc.description.references Jiang, J.-X., Li, Y., Wu, X., Xiao, J., Adams, D. J., & Cooper, A. I. (2013). Conjugated Microporous Polymers with Rose Bengal Dye for Highly Efficient Heterogeneous Organo-Photocatalysis. Macromolecules, 46(22), 8779-8783. doi:10.1021/ma402104h es_ES
dc.description.references Fox, M. A., & Dulay, M. T. (1993). Heterogeneous photocatalysis. Chemical Reviews, 93(1), 341-357. doi:10.1021/cr00017a016 es_ES
dc.description.references Sun, H., Wang, L., Wang, Y., & Guo, X. (2018). Imide‐Functionalized Polymer Semiconductors. Chemistry – A European Journal, 25(1), 87-105. doi:10.1002/chem.201803605 es_ES
dc.description.references Nowak-Król, A., Shoyama, K., Stolte, M., & Würthner, F. (2018). Naphthalene and perylene diimides – better alternatives to fullerenes for organic electronics? Chemical Communications, 54(98), 13763-13772. doi:10.1039/c8cc07640e es_ES
dc.description.references Arzoumanian, E., Ronzani, F., Trivella, A., Oliveros, E., Sarakha, M., Richard, C., … Lacombe, S. (2013). Transparent Organosilica Photocatalysts Activated by Visible Light: Photophysical and Oxidative Properties at the Gas–Solid Interface. ACS Applied Materials & Interfaces, 6(1), 275-288. doi:10.1021/am404175y es_ES
dc.description.references Mathew, S., & Imahori, H. (2011). Tunable, strongly-donating perylene photosensitizers for dye-sensitized solar cells. Journal of Materials Chemistry, 21(20), 7166. doi:10.1039/c1jm10993f es_ES
dc.description.references Wu, Y., Zhen, Y., Ma, Y., Zheng, R., Wang, Z., & Fu, H. (2010). Exceptional Intersystem Crossing in Di(perylene bisimide)s: A Structural Platform toward Photosensitizers for Singlet Oxygen Generation. The Journal of Physical Chemistry Letters, 1(17), 2499-2502. doi:10.1021/jz1008328 es_ES
dc.description.references Würthner, F. (2004). Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. Chem. Commun., (14), 1564-1579. doi:10.1039/b401630k es_ES
dc.description.references Ferrere, S., & Gregg, B. A. (2002). New perylenes for dye sensitization of TiO2. New Journal of Chemistry, 26(9), 1155-1160. doi:10.1039/b203260k es_ES
dc.description.references Céspedes-Guirao, F. J., B. Ropero, A., Font-Sanchis, E., Nadal, Á., Fernández-Lázaro, F., & Sastre-Santos, Á. (2011). A water-soluble perylene dye functionalised with a 17β-estradiol: a new fluorescent tool for steroid hormones. Chemical Communications, 47(29), 8307. doi:10.1039/c1cc10966a es_ES
dc.description.references Céspedes-Guirao, F. J., Martín-Gomis, L., Ohkubo, K., Fukuzumi, S., Fernández-Lázaro, F., & Sastre-Santos, Á. (2011). Synthesis and Photophysics of Silicon Phthalocyanine-Perylenebisimide Triads Connected through Rigid and Flexible Bridges. Chemistry - A European Journal, 17(33), 9153-9163. doi:10.1002/chem.201100320 es_ES
dc.description.references Bodapati, J. B., & Icil, H. (2008). Highly soluble perylene diimide and oligomeric diimide dyes combining perylene and hexa(ethylene glycol) units: Synthesis, characterization, optical and electrochemical properties. Dyes and Pigments, 79(3), 224-235. doi:10.1016/j.dyepig.2008.02.009 es_ES
dc.description.references Zhang, F., Ma, Y., Chi, Y., Yu, H., Li, Y., Jiang, T., … Shi, J. (2018). Self-assembly, optical and electrical properties of perylene diimide dyes bearing unsymmetrical substituents at bay position. Scientific Reports, 8(1). doi:10.1038/s41598-018-26502-5 es_ES
dc.description.references Taguchi, A., & Schüth, F. (2005). Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials, 77(1), 1-45. doi:10.1016/j.micromeso.2004.06.030 es_ES
dc.description.references Trong On, D., Desplantier-Giscard, D., Danumah, C., & Kaliaguine, S. (2001). Perspectives in catalytic applications of mesostructured materials. Applied Catalysis A: General, 222(1-2), 299-357. doi:10.1016/s0926-860x(01)00842-0 es_ES
dc.description.references Carrillo, A. I., García-Martínez, J., Llusar, R., Serrano, E., Sorribes, I., Vicent, C., & Alejandro Vidal-Moya, J. (2012). Incorporation of cubane-type Mo3S4 molybdenum cluster sulfides in the framework of mesoporous silica. Microporous and Mesoporous Materials, 151, 380-389. doi:10.1016/j.micromeso.2011.10.005 es_ES
dc.description.references Garcia-Martinez, J., Linares, N., Sinibaldi, S., Coronado, E., & Ribera, A. (2009). Incorporation of Pd nanoparticles in mesostructured silica. Microporous and Mesoporous Materials, 117(1-2), 170-177. doi:10.1016/j.micromeso.2008.06.038 es_ES
dc.description.references Sriramulu, D., Turaga, S. P., Bettiol, A. A., & Valiyaveettil, S. (2017). Molecular Organization Induced Anisotropic Properties of Perylene – Silica Hybrid Nanoparticles. Scientific Reports, 7(1). doi:10.1038/s41598-017-07892-4 es_ES
dc.description.references Wahab, M. A., Hussain, H., & He, C. (2009). Photoactive Perylenediimide-Bridged Silsesquioxane Functionalized Periodic Mesoporous Organosilica Thin Films (PMO-SBA15): Synthesis, Self-Assembly, and Photoluminescent and Enhanced Mechanical Properties. Langmuir, 25(8), 4743-4750. doi:10.1021/la900042g es_ES
dc.description.references Ronzani, F., Saint-Cricq, P., Arzoumanian, E., Pigot, T., Blanc, S., Oelgemöller, M., … Lacombe, S. (2013). Immobilized Organic Photosensitizers with Versatile Reactivity for Various Visible-Light Applications. Photochemistry and Photobiology, 90(2), 358-368. doi:10.1111/php.12166 es_ES
dc.description.references Shang, J., Tang, H., Ji, H., Ma, W., Chen, C., & Zhao, J. (2017). Synthesis, characterization, and activity of a covalently anchored heterogeneous perylene diimide photocatalyst. Chinese Journal of Catalysis, 38(12), 2094-2101. doi:10.1016/s1872-2067(17)62960-7 es_ES
dc.description.references Lanterna, A. E., Elhage, A., & Scaiano, J. C. (2015). Heterogeneous photocatalytic C–C coupling: mechanism of plasmon-mediated reductive dimerization of benzyl bromides by supported gold nanoparticles. Catalysis Science & Technology, 5(9), 4336-4340. doi:10.1039/c5cy00655d es_ES
dc.description.references Marquez, D. T., Carrillo, A. I., & Scaiano, J. C. (2013). Plasmon Excitation of Supported Gold Nanoparticles Can Control Molecular Release from Supramolecular Systems. Langmuir, 29(33), 10521-10528. doi:10.1021/la4019794 es_ES
dc.description.references Albiter, E., Alfaro, S., & Valenzuela, M. A. (2015). Photosensitized oxidation of 9,10-dimethylanthracene with singlet oxygen by using a safranin O/silica composite under visible light. Photochemical & Photobiological Sciences, 14(3), 597-602. doi:10.1039/c4pp00261j es_ES
dc.description.references Prusakova, V., McCusker, C. E., & Castellano, F. N. (2012). Ligand-Localized Triplet-State Photophysics in a Platinum(II) Terpyridyl Perylenediimideacetylide. Inorganic Chemistry, 51(15), 8589-8598. doi:10.1021/ic301169t es_ES
dc.description.references Simonutti, R., Comotti, A., Bracco, S., & Sozzani, P. (2001). Surfactant Organization in MCM-41 Mesoporous Materials As Studied by13C and29Si Solid-State NMR. Chemistry of Materials, 13(3), 771-777. doi:10.1021/cm001088i es_ES
dc.description.references Cardelli, A., Ricci, L., Ruggeri, G., Borsacchi, S., & Geppi, M. (2011). Optical properties of a polyethylene dispersion with a luminescent silica prepared by surface grafting of a perylene derivative. European Polymer Journal, 47(8), 1589-1600. doi:10.1016/j.eurpolymj.2011.05.006 es_ES
dc.description.references Prathapan, S., Yang, S. I., Seth, J., Miller, M. A., Bocian, D. F., Holten, D., & Lindsey, J. S. (2001). Synthesis and Excited-State Photodynamics of Perylene−Porphyrin Dyads. 1. Parallel Energy and Charge Transfer via a Diphenylethyne Linker. The Journal of Physical Chemistry B, 105(34), 8237-8248. doi:10.1021/jp010335i es_ES
dc.description.references Ford, W. E., & Kamat, P. V. (1987). Photochemistry of 3,4,9,10-perylenetetracarboxylic dianhydride dyes. 3. Singlet and triplet excited-state properties of the bis(2,5-di-tert-butylphenyl)imide derivative. The Journal of Physical Chemistry, 91(25), 6373-6380. doi:10.1021/j100309a012 es_ES
dc.description.references Ghirotti, M., Chiorboli, C., You, C.-C., Würthner, F., & Scandola, F. (2008). Photoinduced Energy and Electron-Transfer Processes in Porphyrin−Perylene Bisimide Symmetric Triads. The Journal of Physical Chemistry A, 112(15), 3376-3385. doi:10.1021/jp7109516 es_ES
dc.description.references Olea, A. F., & Wilkinson, F. (1995). Singlet Oxygen Production from Excited Singlet and Triplet States of Anthracene Derivatives in Acetonitrile. The Journal of Physical Chemistry, 99(13), 4518-4524. doi:10.1021/j100013a022 es_ES
dc.description.references Wilkinson, F., Helman, W. P., & Ross, A. B. (1993). Quantum Yields for the Photosensitized Formation of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. Journal of Physical and Chemical Reference Data, 22(1), 113-262. doi:10.1063/1.555934 es_ES
dc.description.references Zhao, Y. Z., Li, K. X., Ding, S. Y., Zhu, M., Ren, H. P., Ma, Q., … Miao, Z. C. (2018). The Effect of Reduction Potential on the Generation of the Perylene Diimide Radical Anions. Russian Journal of Physical Chemistry A, 92(7), 1261-1265. doi:10.1134/s003602441807035x es_ES
dc.description.references Daw, P., Petakamsetty, R., Sarbajna, A., Laha, S., Ramapanicker, R., & Bera, J. K. (2014). A Highly Efficient Catalyst for Selective Oxidative Scission of Olefins to Aldehydes: Abnormal-NHC–Ru(II) Complex in Oxidation Chemistry. Journal of the American Chemical Society, 136(40), 13987-13990. doi:10.1021/ja5075294 es_ES
dc.description.references Nyawade, E. A., Friedrich, H. B., Omondi, B., & Mpungose, P. (2015). Synthesis and Characterization of New (η5-Cyclopentadienyl)dicarbonylruthenium(II) Amine Complexes: Their Application as Homogeneous Catalysts in Styrene Oxidation. Organometallics, 34(20), 4922-4931. doi:10.1021/acs.organomet.5b00564 es_ES
dc.description.references Muthumari, S., & Ramesh, R. (2018). Synthesis and Structure of Ru(II) Complexes of Thiosemicarbazone: Highly Selective Catalysts for Oxidative Scission of Olefins to Aldehydes. ChemistrySelect, 3(11), 3036-3041. doi:10.1002/slct.201800163 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem